
Installing, Using, and Creating
buzztouch Plugins

Rev 11/29/2011 1 of 14

Table of Contents
About Plugins.. 3

Why plugins are necessary... 3
What plugins do..4
Who creates plugins.. 4
How do I get new plugins...4

Managing Plugins in the Control Panel...4
Installing plugins..5
Updating plugins...5
Removing plugins..6
Plugins on the web server..6

Using Plugins in Applications.. 7
Creating a new screen using a plugin... 7
Modifying a screen's behavior... 8

Creating Plugins...9
When to create a new plugin..9
Things to consider when creating new plugins...9
How plugins work, technically... 9
The plugin package..10
A simple step-by-step example..11

Distributing Plugins ..12
How can I distribute a plugin I created...13
Updating a plugin after it has been distributed...13

Conclusion...13

Rev 11/29/2011 2 of 14

About Plugins
Every screen in a buzztouch app is derived from a plugin. For this reason,
understanding what plugins do, how to find them, how to install them, and how to
use them is important if you're to create anything beyond the most basic app.

Some plugins are simple, some plugins are complex, but all plugins help you
extend the usefulness of an application. Using the right plugins and / or creating
your own plugins helps you make your application do almost anything you can
think of. If you can imagine it, a plugin can do it.

When you add new screens
to an app, you start by
choosing an existing plugin
from a list in the control
panel. The choices in the list
are determined by the
number of plugins installed
in the Admin Panel of the
software. Administrators
determine which plugins can
and cannot be added to
individual applications. This
means that if you want to use a plugin that does not show up in the list of choices
you'll need to install that plugin in the Admin > Manage Plugins screen first. If
you're not a system administrator you won't be able to do this.

You do not need to install a plugin in the control panel every time you want to use
it, only the first time. Also, once the plugin is installed, it becomes available for
use in any app in the control panel.

Why plugins are necessary
Plugins are necessary because there is no way to predict in advance what an
applications purpose, intention, or audience is. Cookie-cutter apps and template
driven approaches can cover lots of the situations but not all of them. The fact is,
the best apps, the highest quality apps, and the most successful apps always
include unique features that set it apart from all the others. We have spent years
at buzztouch.com learning, discovering, and improving our concept of web-based
app management. In this time we have gained a deep understanding of what
works, what doesn't work, what developers want, and what end-users expect. An
organized, efficient, useful, beautiful, and oftentimes fun app is the objective. A
plugin architecture is our approach to helping you meet that objective.

Nearly every idea or feature you see in a mobile app is an extension of an
existing idea. Very few apps are genuinely unique, most are improvements or

Rev 11/29/2011 3 of 14

extensions of functionality found in other apps. For non-creative apps, such as a
utility app used by a group of employees, necessary functionality becomes more
predictable.

It is much more efficient for an app developer to implement customized features
and functions by starting with an existing foundation of code. For example,
creating a map highlighting local restaurants is not unique. However,
implementing a new super-restaurant-locator with a new and exciting feature
could help set the app apart from other existing apps. For the developer, it makes
sense that the programming of the super-restaurant-locator feature would begin
by leveraging code already written in a generic, boring map. Repurposing code is
a significant time saver and a plugin architecture makes this possible.

What plugins do
From a technical perspective, plugins do two things.

1. First, they allow an app owner to manipulate certain properties of a screen
by way of making choices in an online control panel.

2. Second, they provide the source-code for the app (Objective-C for iOS or
Java for Android) when the project is packaged for download.

Who creates plugins
Anyone can create a plugin. It doesn't take much skill to create a new plugin
when you start by copying an existing plugin. However, it does take some
programming skill and experience to create sophisticated plugins. For this reason,
it is very common for new developers to begin creating plugins only to find that
they need help with some programming before they can finish perfecting their
idea. This is normal and part of the learning process. And, it's a significant time
saver for an app owner or inexperienced developer to be able to prototype their
concept, complete parts of it, then hire out only the missing pieces. This is very
difficult to do without a plugin architecture.

How do I get new plugins
In most cases plugins are discovered and downloaded from buzztouch.com.
Third-party websites and other developers may also distribute plugins. It's also
common for developers and app owners to share plugins amongst themselves.
Where the plugin comes from is not important, how it works and functions is.

Managing Plugins in the Control Panel
The Manage Plugins screen (admin control panel) is used to see what plugins are
installed and to install new plugins or to remove existing plugins. Choose “Grid
View” or “List View” depending on your preference.

Rev 11/29/2011 4 of 14

The title and icon for the plugin are provided by the plugin author. Clicking a
plugin on the Manage Plugins screen shows additional details about the plugin
such as it's purpose, author, screenshots, and other useful information.

Installing plugins
There are three steps to install plugins.

1) Download the plugin package(s) from buzztouch.com (or from any other
location). Plugin packages are .zip archives and each .zip package contains
multiple files. Do not unzip the archives after downloading them. Each .zip
archive represents one plugin and no two .zip archives will have the same
name.

2) Click the “Add or Update Plugins” link on the Manage Plugins screen. A
screen will display that allows you to upload the .zip package(s). When you
upload a .zip package, the control panel software will verify that the
package contains all the necessary files required to make the plugin work.
Continue this process until you have uploaded all the plugins you need to
install. Note: If you upload a package that you previously uploaded you will
need to check the “Update Existing Plugin” checkbox.

3) Click the “Refresh Plugins” link. The process syncs the control panel
software with its supporting database. If you don't refresh the plugin list
after uploading new packages the list of installed plugins will not be
updated.

Updating plugins
The steps to updating a plugin are identical to the steps to install a plugin (see
previous section). When you upload plugins that you have previously installed,
you are overwriting the existing matching plugin with the update.

Rev 11/29/2011 5 of 14

It's important to understand that updating plugins in the online control panel does
not change anything in any apps that you have already compiled. Example: You
create an app with a Map Screen then publish it and distribute it. If the Map
Screen plugin is updated in the control panel, the apps that you have already
distributed will still have the “old code” from the original Map Screen plugin. This
may or may not matter, depending on the nature of the update. In some cases, it
will be necessary to re-compile and re-distribute any apps that rely on the
updated plugins code.

Removing plugins
To remove a plugin, click “List View” on the Manage Plugins screen then use the
“remove” option. This option does not show in “Grid View”.

Plugins on the web server
If you use an FTP program to browse the file system on your web server, the
/files/plugins directory looks like this. Note the individual directories for each
installed plugin. When you initially install the control panel software, no plugins
will exist. This is what it looks like after you've installed a few.

Rev 11/29/2011 6 of 14

When you click the “Refresh Plugins” link in the control panel, the software
inspects the content of each of the folders (see previous image) then updates the
supporting database accordingly.

Using Plugins in Applications

Creating a new screen using a plugin
Plugins are used to create new screens in apps. Three steps to use a plugin...

1) Click the “Screens and Actions” link in an apps control panel.

2) Enter a nickname for the screen you're about to create.

3) Choose a plugin type from the drop-down list. The choices in the drop-down
list are derived from all the plugins installed in the Manage Plugins area of
the admin panel. Information about each plugin type is displayed for
reference. The number next to each plugin's name shows you how many
screens in this application are based on that plugin type.

It's important to understand that most plugins require additional configuration
after adding them to an app. Example: The Custom URL plugin in the example
image will require an internet address to function. The number of properties and
the types of information required to make a plugin work are determined by the
plugin author. Some plugins have lots of properties, others have none. It all
depends on the purpose of the plugin.

Rev 11/29/2011 7 of 14

Modifying a screen's behavior
When you add a new screen to an application, its default behavior is determined
by the plugin it is based on. The author of the plugin decides this default
behavior. In most cases, the plugin will need additional configuration.
Configuration options (properties) of each screen are adjusted using the online
control panel. The sample below shows the properties for a screen named “My
Webpage.” Some plugins will have lots of adjustable properties and some plugins
will have none.

When you “save” the properties of any screen and commit the changes to the
database, it's likely that the application has changed (at least this screen has).
It's also possible that you have already compiled and distributed the application
you are now modifying. In this case, devices that have already installed the app
will need a way to “learn” about the changes you made in the online control
panel. In most cases this is handled automatically by the device and end-users
will be prompted to “refresh” the apps data.

However, it's possible that the app owner compiled, then distributed the app
without a connection to the online control panel. This could be intentionally or
unintentionally. In either case, if the app is not connected to the online control
panel, devices will have no way to know about the changes. In this situation, app
updates are only possible by manually updating the apps configuration data,
recompiling the project, then re-distributing the app to end users.

In some cases it's useful to look at the apps configuration data (use the

Rev 11/29/2011 8 of 14

“configuration data” link in the apps control panel) after you make changes. This
is useful in cases when you want to see how the data changes based on your
selections.

Creating Plugins

When to create a new plugin
Creating new plugins is necessary when the available plugins will not accomplish
what you need to do. Generally speaking, if you need a new screen type, you
need a new plugin. In many cases a new plugin is not necessary because an
existing plugin could be configured to behave in the desired manner.

Things to consider when creating new plugins
There are a few things to think about when you're considering creating a new
plugin. Among other things, consider this...

1) Does the new plugin need to work in multiple apps in the control panel or is
it very specific to one app?

2) Will you be sharing or distributing the plugin so other developers can use it?

3) Do you have the skill to create the new plugin or will you need to recruit or
hire some help?

4) Should the new plugin be based off an existing plugin or should it be
created entirely from scratch?

5) Will the new plugin require database or backend support to function?

6) Will the new plugin require an internet connection?

7) Does the new plugin rely on images, audio, video, or file system assets?

How plugins work, technically
Plugins are not as sophisticated as some folks want to believe. For an experienced
developer, the concept makes perfect sense. Aspiring developers tend to confuse
the idea that because there are so many files in a plugin package, they must be
very complex.

The easiest way to think about it is to consider what's happening when a user
adds a new screen to an app then downloads the source code. Fundamentally,
two things happen.

1) An app owner adds a new screen to an application and the new screen is
added to the database. The newly added screen uses the default
configuration data provided by the plugin. App owners may or may not
provide additional configuration data for the plugin. If they do, that too is

Rev 11/29/2011 9 of 14

saved to the database.

2) When the source code for an application is downloaded, each screen in the
database is inspected and processed. Because each screen is derived from a
plugin, that plugin is responsible for providing the iOS and Android source
code that is included in the Xcode or Eclipse project.

For sure it's a sophisticated process and lots of time went into engineering it. But,
it's not that complicated once you understand how it works. The key is that each
plugin must contain some required files in its directory so the control-panel can
understand how to work with it.

The plugin package
Every plugin package (directory) contains 6 required files and 2 required sub-
directories. It's important that the file names of these required files match
precisely what is displayed in the graphic. File names are case sensitive and must
include the file extension.

The required files are:

config.txt, readme.txt, icon.png,
index.php, save_AJAX.php, save.js,
/source-android, /source-ios

Optional files are:

update.txt, /screenshots

Side note: As mentioned previously,
it's usually best to begin making a new
plugin by copying the entire directory
of an existing plugin. Next, rename the
new directory so it's unique. This
approach ensures that you have the
required files named properly.

Each required file or sub-directory in the plugin package has a specific purpose.

config.txt: This file contains important information about the plugin used by the
control panel for several things. The config.txt file serves as a sort of manifest for

Rev 11/29/2011 10 of 14

the plugin and it's essential that its information be accurate.

readme.txt: This file contains information intended for humans. Its purpose is to
explain in plain-language how the plugin works, what its purpose is and why
somebody would want to add it to their control panel. In essence, the readme.txt
file serves as the instruction manual for the plugin.

icon.png: This is a 50 x 50 .png image that displays in the online control panel.

index.php: This is a web page that app-owners use to configure the plugins
properties. When an app owner “clicks a screen” to configure it, the index.php
page loads and presents them with configuration options in an HTML form.

save.js: This is a javascript file that is included in the HTML markup in the
index.php web page. “Saving” plugin properties triggers a method in this file that
POSTS the values in the FORM element in index.php. It posts these values to the
save_AJAX.php script.

save_AJAX.php: This file is responsible for receiving the app owners inputs
(from the FORM included in index.php) and committing them to the database.

/source-android: This sub-directory contains all the required resources for the
Android version of the plugin to work. This is usually only two files but may be
more. The two required files in this folder are the Android Activity Class (a .java
class file) and the Android Layout file (a .xml layout file). Additional files in this
folder may be graphics, audio, and other supporting .java code or .xml layout
code.

/source-ios: This sub-directory contains all the required resources for the iOS
version of the plugin to work This is usually only two files but may be more. The
two required files in this folder are the UIViewController's .m and .h files.
Additional files in this folder may be graphics, audio, and other supporting
Objective-C objects necessary to support the UIViewController.

Optional files

/screenshots: This optional sub-directory contains screenshots displayed in the
control panel. When creating screenshots, export them as lightweight .png files.
If you screen-capture the simulator running you'll end up with images around 396
x 744 which is appropriate. Do not include any thumbnail versions of the
screenshots, the control panel will create these automatically.

update.txt: This optional file is used when a user clicks the “Check for updates”
option when viewing a plugins details. This concept will be discussed later in this
document.

A simple step-by-step example
Because the best way to create a new plugin is to begin by copying an existing
plugin, the process can be broken down into a few simple steps. In this simple

Rev 11/29/2011 11 of 14

example we will create a new plugin called “db_screen_sample” to illustrate how
easy this can be. Keep in mind that this plugin won't do much but it will
demonstrate the process. The following 6 steps can be completed in :05 minutes
or so with some practice.

1) Copy the bt_screen_blank plugin (the entire folder) and paste it in your
documents directory. Rename the folder my_first_plugin.

2) Expand the my_first_plugin folder. Open the config.txt file in your favorite
text editor. Change the uniquePluginId to: emptyScreen. Change the
displayAs to: Empty Screen. Change the loadClassOrActionName to:
my_first_plugin. Change all the author information to your information.
Remove the updateURL and the downloadURL. All of the elements still exist
but have new values. updateURL and downloadURL are blank. Save and
close this file.

3) Open the readme.txt file in your favorite text editor. Replace all the
occurrences of BT_screen_blank with my_first_plugin then save and close
this file.

4) Open the icon.png in your favorite image editor. Modify this image so it's
unique and meaningful. For this example a simple question mark is
appropriate. Save and close your image editor.

5) Expand the source-android folder. Rename the screen_blank.xml file to
my_first_plugin.xml, rename the BT_screen_blank.java to
my_first_plugin.java. Open the my_first_plugin file in your favorite text
editor. Replace all occurrences of BT_screen_blank with my_first_plugin.
Replace R.layout.screen_blank with R.layout.my_first_plugin then save and
close this file.

6) Expand the source-ios folder. Do the same thing with the Objective-C code
that we did to the Android code. Rename BT_screen_blank.h to
my_first_plugin.h, rename BT_screen_blank.m to my_first_plugin.m. Open
both of these files in your favorite text editor and replace all occurrences of
BT_screen_blank with my_first_plugin.

That's all there is to it, you've created an entirely new plugin based on an existing
plugin. In a real-world situation you would then create unique functionality in the
Objective-C and .java files, some new screenshots, and modify the index.php to
accurately reflect the plugins purpose. But, the idea is the same, copy an existing
plugin, rename some files and change some values, then go to work creating the
unique aspects of your idea without starting from scratch.

Distributing Plugins
You may or may not wish to distribute or share plugins that you create, it's

Rev 11/29/2011 12 of 14

entirely up to you. If you do plan to distribute a plugin, it's important to consider
two concepts. Distribution and updates.

How can I distribute a plugin I created
You can distribute your cool plugin in a few ways. You can email it as a .zip
archive to other developers, you can send a .zip archive to buzztouch.com and
ask that it be included in the growing list seen by hundreds of thousands of site
visitors, or you can upload a .zip archive to a web enabled directory (like DropBox
or your website) then promote the URL to others so they can download it. The
best method depends on your motive. Note: If you ask us to display your plugin
on buzztouch.com we may or may not do it. It depends on the quality,
usefulness, and nature of the plugin. We'll do what we can but make no promises.

Updating a plugin after it has been distributed
App owners need a way to update plugins in their control panels. This means they
need a way to learn that an update is necessary. Plugin updates are common
because things tend to move very quickly in mobile and developers make
improvements constantly. The best way to manage this is:

1) Distribute your plugin by way of a download from a URL.

2) Include the downloadURL in the config.txt file. Also include the update URL
in the config.txt file. We removed these in the step-by-step example (earlier
in this document) for simplicity.

Here's the idea. When an app owner installs the plugin, then opens the plugin
details screen to view that plugins info, they are presented with a “check for
updates” option IF the config.txt file for the plugin includes an updateURL. The
updateURL generally points to a simple text file on a web enabled folder
somewhere (DropBox again) and this text file includes a simple “version string.”
When the app owner checks for updates, this URL returns the most current
version string. If the string is different than the version string in the already
installed plugin, an update is necessary. The “download latest package” link in the
control panel opens the downloadURL in the config.txt file. This leads to the
plugins .zip archive.

This simple approach allows app owners to download the latest version of your
plugin only when necessary and relieves you from having to “tell everyone” that
your plugin has been updated.

Conclusion
Congratulations for taking the time to get through this lengthy document. We
believe strongly that usefulness, flexibility, and creativity provided by learning

Rev 11/29/2011 13 of 14

how to manage plugins is well worth the read. We encourage you to begin making
as many plugins as you need, sharing them with the buzztouch community, and
continuing to expand your mobile development arsenal.

Rev 11/29/2011 14 of 14

	About Plugins
	Why plugins are necessary
	What plugins do
	Who creates plugins
	How do I get new plugins

	Managing Plugins in the Control Panel
	Installing plugins
	Updating plugins
	Removing plugins
	Plugins on the web server

	Using Plugins in Applications
	Creating a new screen using a plugin
	Modifying a screen's behavior

	Creating Plugins
	When to create a new plugin
	Things to consider when creating new plugins
	How plugins work, technically
	The plugin package
	A simple step-by-step example

	Distributing Plugins
	How can I distribute a plugin I created
	Updating a plugin after it has been distributed

	Conclusion

