Compiling Your Android Application
v1.0
By GoNorthWest
30 November 2011

So, you read my other document, Setting Up Your Android Development Environment, and now you
want to compile and run that super cool Android app you created on Buzztouch. Fair enough! You’ve
done the hard part up to now...the rest is pretty easy once you understand how things work. This
document will show you two different ways to get your app running in the Android emulator you set up
previously and ultimately on a device!

Scroll down to the next page to start with Method 1 : Import Your Project. | haven’t quite worked out all
the formatting issues yet.

Yeah...next page...it's there..really!
Have fun!

Here's a picture | took this summer to keep you entertained until the next page.

Method One: Import Your Project

When you download your Android code package from Buzztouch, you’'re essentially getting a complete
project. All the files you need are contained in the zipped folder you get. So, importing your project into
Eclipse is as easy as specifying the folder location, proving a bit of info, and hitting OK! Let’s get started!

1. Start Eclipse. Start Eclipse by either double-clicking on the icon you set up for it somewhere, or
double-clicking on the eclipse.exe file that is found In your installation path. For me, it’s at
c:\eclipse\eclipse.exe.

2. Import Your Project.

a. Go to File...Import.

- Java - Eclipse SDK

File Edit Refactor Run Mavigate Search Project Bookr

Mew Alt+shift -+ L i}
Cpen File...

Convert Line Delimiters To L

Switch Workspace L
Restart

Exg Import...
£ Export...

Froperties Alt+Enter
1 AndroidManifest.xml [Thunderdroid]

Exit

b. From the resulting dialogue box, expand General if necessary, and then select Existing
Projects into Workspace. Hit Next.

< Import =8
Select \
Create new projects from an archive file ar directory. | g - 5 |

Select an import source:

EIE? General
: ----- @; Archive File

------ [Existing Projects into Workspace

----- {7, File System

. L Preferences
- ovs

#-[= Install

#-[2= Plug-in Development
E? Fun/Debug

- (2= Tasks

(= Team

- XML

F]

®@

c. Make sure Select root directory is selected, then hit Browse and select the unzipped

folder that you got from Buzztouch. Just select the root folder...none of the ones

beneath it, and none of the files.

Select root directory of the projects to impaort

= |g3) Thunderdroid
= Q thunderdroid-Android-BTv 15-EAG4CBES 32B55E66 70ABCCSCD

@ Settings
@ assets
lg) bin

53 gen

g jar

g res

i) src

Falder: thunderdroid-Android-BTv 15-EAG4CBES 328 55E66 70ABCCSCD

Make Mew Folder

Ok

] [Cancel

d. Your project should show up in the Projects: box, and should be checkmarked. hit
Finish.

= Import

Import Projects
Select a directory to search for existing Edipse projects.,

(%) Select root directory: | ¢ \Documents and SettingsmfiMy Documentsh

() select archive file: Browze

nr
il)

Projects:

buzzTouch (C:\Documents and SettingsimfiMy DocumentsiMy Dro Select Al

Deselect all

11

Refresh

(<] iy | (2]

[] copy projects into workspace

Working sets

[] add project to working sets

Working sebs; i L

©

Finish] [Cancel

e. Wait while Eclipse builds your workspace. You can see the progress in the lower right-
hand corner of Eclipse.

| Refreshing workspace

E 1
Building workspace: (74%%) [F=) &

f. Once the workspace is built, your project should be loaded and ready for you to work
with. You should see a screen similar to the following. We'll address the warnings and
stuff later...this is just about getting your project into Eclipse.

-
Al B IEBNE B0 HEG ®E N G
[# Package Explorer 3 =0

RS =

= 1= buzzTouch

+ B Google APIs [Android 2.2]

-2 src

£ Gﬁ gen [Ge

4 GE? assets
= jar

4 GE? res
| AndroidManifest, xml
default.properties
|=| LICEMSE. txt
|=| README_v1.5.txt

-t b] console LogCat

0 errors, 187 warnings, 0 others (Filter matched 100 of 187 items)
Description
& Warnings (100 of 187 items)

Resource Path Location Type

Method Two: Start A New Android Project.

This method starts an entirely new project, but uses files that you point Eclipse to. It’ll say a project
already exists in your source folder, but that’s OK, just select it, and it’ll build the project based on those

files.

1. Start Eclipse. Start Eclipse by either double-clicking on the icon you set up for it somewhere, or
double-clicking on the eclipse.exe file that is found In your installation path. For me, it’s at
c:\eclipse\eclipse.exe.

2. Start a new Android Project.

1. Go to File...New...Project. You might have an option for Android Project, but you might
not. So, just select Project.

= Java - Eclipse SDK

File Edit Refactor Run Source Mavigate Search Project Bookmarked PDFs Window Help
Mew Alt+Shift+N P (2% 1ava Project o=
Cpen File. .. Gg Android Project

=ar

[7] Project...

i

B Package

(& Class

&% Interface

& Enum

(@ Annotation

{r°7 Source Folder

155 Java Working Set
&' Refresh FS [Folder

* File

= Untitled Text File
Al Android XML File
£ JUnit Test Case

Convert Line Delimiters Ta »

-

Switch Workspace

Restart T Task
g2y Import... % Example...
3 Export... _
[Other... Cirl+N

1 AndroidManifest,xml [Thunderdroid]

Exit .| Bl console 53 LogCat
Android

2. From the resulting dialogue box, expand Android if necessary, and select Android
Project. Hit Next.

~ New Project - @
Select a wizard —
Wizards:

@ Java Praoject
-}E-} Java Project from Existing Ant Buildfile
‘:{Eﬁ Plug-in Praject
= Gereral
== Android
-2 android Project
]% Android Sample Project
J{:.I Android Test Project
= cvs i
= Java
[= Plug-in Development
[= Examples

©

3. Specify a Project Name (I use the same name as what | have in the BT control panel for
the app). Select Create Project From Existing Source and browse to your download
folder. Select the root folder from the source package you downloaded and unzipped
from BT. Hit Finish.

3 New Android Project N= <

Create Android Project

i An Edipse project already exists in this directory,
Consider using File > Impart = Existing Project instead.

Project Mame: | Thunderdroid

O Create new project in workspace
'@} Create project from existing source
(") Create project from existing sample

Location: Iroid\thunderdroid-Android-BTv 15-EAG4CEBES 32B55E66 FOABCCSCD
Warking sets
[] add project to working sets

Working seks: Select

® < Back ” Mext = H Finish H Cancel

4. Wait while Eclipse builds your workspace. You can see the progress in the lower right-
hand corner of Eclipse.

| Refreshing workspace

E 1
Building workspace: (74%:) [F=_) &

5. Once the workspace is built, your project should be loaded and ready for you to work
with. You should see a screen similar to the following. We'll address the warnings and
stuff later...this is just about getting your project into Eclipse.

wil = B IEBNE B0 HEG ®E N G
[# Package Explorer 3 =0
RS =

= 1= buzzTouch

+ B8\ Google APIs [Android 2.2]
-2 src
£ Gﬁ gen [Generated Java Files]
4 GE? assets

= jar
4 GE? res

| AndroidManifest, xml

= default.properties

|=| LICEMSE. txt

|=| README_v1.5.txt

sl P E console LogCat
0 errors, 187 warnings, 0 others (Filter matched 100 of 187 items)

Description Resource Path Location Type
& Warnings (100 of 187 items)

Congratulations! Your project is now loaded into Eclipse and ready for you to work with. See...that
wasn’t so bad!

Before you can actually run your application, you’ll need to make sure it’s error free. It's OK if there are
warnings in your application...those are just what they sound like, but you can’t have any errors. Take a
look at the Problems tab and see what’s there.

" Problems 3 El console | 833 LogCat | 53 Progress
0 errors, 198 warnings, 0 others (Filter matched 100 of 198 items)

Description Resource
+ & Warnings (100 of 198 items)

In this particular example, there are only warnings, so that’s a good thing. However...initially, when |
loaded this project, it came up with a bunch of errors. | struggled for a bit to understand why, and then

decided to check and make sure the correct Google APl was being referenced. It was not, and when |

corrected it, all was well. So, if you see errors in you project, do the following:

1.

Go to File....Properties and click on Android. For Buzztouch v1.5 apps, you need to make
sure you have selected Google APIs 2.2/8. If you have not, none of this will work. Make sure
that, and only that, APl is checked, and hit Apply. Then hit OK.

[] Android 2.2 Android Open Source Project 2.2
Google APIs Google Inc, 2.2
[] Android 2.3.1 Android Open Source Project 2.3.1
| R . - . - .

VouD Coooo

Go to File...Refresh (F5) and refresh your project. Hopefully all the errors will disappear! If
they don’t, something else is wrong, and you’ll need to post a message on the forum to ask
for help.

Now that your app is error free (remember, warnings are OK), you’r e ready to compile and run it in the
simulator. You should have an Android Virtual Device set up in Eclipse per my other document. It will get
loaded automatically when you run your app.

To run your app in the virtual device, do the following:

1.

[2011-11-30 14:26:28 - buzzTouch
[2011-11-30 14:26:28 - buzzTouch
[2011-11-30 14:26:28 - buzzTouch
[2011-11-30 14:26:28 - buzzTouch
launch

Highlight your project in Package Explorer

Go to Run...Run As...Android Application. Or, you could hit the green circle icon you see on
the toolbar.

Click on the Console tab so you can monitor what’s happening. If things are going well,
you’ll see output that looks like this:

Android Launch!
adb is running normally.
Performing com.thunderdroid.BT activity root activity

[2011-11-30 14:26:29 - buzzTouch] Automatic Target Mode: launching new emulator with
compatible AVD 'Buzztouch v1.5'

[2011-11-30 14:26:29 - buzzTouch] Launching a new emulator with Virtual Device
'Buzztouch v1.5'

[2011-11-30 14:27:15 - buzzTouch] New emulator found: emulator-5554

[2011-11-30 14:27:15 - buzzTouch] Waiting for HOME ('android.process.acore') to be

launched. ..

4.

Wait while everything loads...this often takes several minutes. Seriously...you can get a cup
of coffee, or perhaps arrange to send me a case of SoBe Fruit Punch (my favorite drink!)
while it’s loading. The AVD is super slow to load.

If everything goes well, your app will show up in your AVD, and you’ll be doing the happy
dance!

|2 5554:Buzztouch_v1.5 N|[=

List Screen

o000 o0

aaV

10o-fa {alsJs [r]s [Jo
o/l e [r {v Ju s fo o
oI5 Jo [r o [u [y Jic|s |28
elo b eIy o by o[Jo0
B o O P P

(Yeah, | know that’s a totally lame looking app, but it was just something | threw together to
demonstrate this stuff for you. I’'m working on some better stuff...I promise!)

So, now you know that your app works, and after spending countless hours making it look beautiful,
you're ready to test it on a real device, or publish it somewhere for the general masses. Let’s take a look
at how you Export your app and create the .apk package you need in order to install it on a device.

Depending on whether you are creating a debug (test) package, or a release package, you are going to
need to use the Debug Keystore or Release Keystore that | showed you how to create in the previous
document. Just a heads up.

Here's the process for creating a debug package:
1. Highlight your project in Package Explorer.

2. Go to File...Export, and select Export Android Application. Expand the Android section if you
don’t see that option. Hit Next.

3. Select the project to export. It should already be filled in with your project name. If not, browse
to the folder your project is in. Note the statement “The manifest ‘debuggable’ attribute is set to
true.” This is what you want. Hit Next.

4. Navigate to your debug.keystore file, and enter the keystore password (‘android’ is the default).
Hit Next.

==

1 = Export Android Application @

: Keystore selection

(¥} Use existing keystore
() Create new keystore

Location: | C:'\Documents and Settingsnf, androididebug. keystore

Password: | sesssss

=T T T 5T

Confirm:

L] L

L]

@:‘ < Back ” Mext =]

5. Choose Use Existing Key, and select your debug.keystore alias (default is ‘androiddebugkey’)
and password (‘android’). Hit Next.

(¥} Use existing key

Alias:

() Create new key

| androiddebugkey

Password: | TIIIIL

@

<Back || hext> |

Einish Cancel !

If

6. Browse to the location you want to have your package saved to, then hit Finish.

e

1 = Export Android Application @

|| Destination and key/ certificate checks

Certificate expires on Sat Sep 07 14:51:21 MST 2041,

L B e B

L]t

e

7. Check the location to make sure the file was created! If all is good, you can now deploy this on

your test device. I've found that putting it on the web somewhere and having a person surf to

the package is the easiest way to install.

buzzTouch.apk

Creating a release package is basically the same process as a debug package. The main differences are
the keystore you use, and the fact that the debuggable attribute is set to ‘false.” Here’s what you do:

1. Double-click on the AndroidManifest.xml file in your project tree. You'll find that in Project
Explorer. Several tabs should open up, one called Application. In that tab you will find many
fields that can be changed, one of which is called Debuggable. You want to set this to false.

0
0

|9 buzzTouch Marifest 3 |X]| strings.xml 1 project. properties W default.properties 1 51

i Android Manifest Application &)
« Application Toggle

151 The application tag describes application-evel components contained in the package, as well as general application atiributes,
Define an <application tag in the AndroidManifest. xml

« Application Attributes
Defines the attributes spedific to the application.

Mame thunderdroid_appDelege Enabled |
Theme @android:style Theme. Debuggable | false
Label @string/app_name Vm safe mode |
Icon @drawable ficon Manage space activity Browse. ..
Description Allow clear user data |

Permission M Test anly |

Process Backup agent Erowse...
Task affinity Allow backup

EEEEIEEIEEE

|
Allow task reparenting | M Kill after restore |
Has code | M Restore needs application |
Persistent | M Restore any version |

Application Nodes @ [E] @ @ @ @ @ Az
@-[A] BT_activity_root (Activity) A
@ BT _activity_base (Activity) H

BT _activity_root_tabs (Activity) Bem

[A] BT arreen aodin (Activited M
|11}

£
Manifest @ Application @ Permissions | E] Instrumenmﬁnn| |=| AndreidManifest, xml

I

~

N

Highlight your project in Package Explorer.

3. Go to File...Export, and select Export Android Application. Expand the Android section if you
don’t see that option. Hit Next.

4. Select the project to export. It should already be filled in with your project name. If not, browse
to the folder your project is in. Hit Next.

5. Navigate to your release.keystore file, and enter the keystore password (I have no idea what it
would be for you). Hit Next.

6. Choose Use Existing Key, and select your release.keystore alias and password. Hit Next.

7. Browse to the location you want to have your package saved to, then hit Finish.

That’s it! Just like with the debug process, you should now have a .apk file somewhere that can be
loaded into whatever marketplace you want to distribute from.

Hopefully this document has helped get you on your way to getting a super sweet Android application
out to the world. If I'm missing anything, or there are better ways of doing things, please let me know!
Constructive criticism is always appreciated!

Comments? Post them in the forum or email me at MrkFleming@gmail.com.

Revision Log

v1.0 11/30/11 Initial release of document. GoNorthWest

mailto:MrkFleming@gmail.com

