
Plugins Market

Creating, Sharing, and Selling
Buzztouch Plugins

Rev 11/20/2013 1 of 17

Table of Contents
About Plugins.. 4

What plugins do..4
Why plugins are necessary... 5
Who creates plugins.. 5
How do I get new plugins...6

Managing Plugins in the Buzztouch control panel...6
Installing plugins in a buzztouch.com control panel......................................6
Updating plugins in a buzztouch.com control panel......................................7
Removing plugins from a buzztouch.com control panel.................................7

Managing Plugins in a Self Hosted control panel..7
Installing plugins in a self hosted control panel..8
Updating plugins in a self hosted control panel..8
Removing plugins from a self hosted control panel.......................................8
Plugins on the self hosted control panel's web server....................................8

Using Plugins in Applications.. 9
Creating a new screen using a plugin... 9
Modifying a screen's behavior..10

Creating Plugins... 11
When to create a new plugin...11
Things to consider when creating new plugins...12
Selling or sharing plugins in the Buzztouch market.....................................12
Updating a plugin in the Buzztouch market...13
Updating a plugin hosted on a third party website or blog...........................13
The plugin package..13
Understanding the config_cp.txt file... 15

Rev 11/20/2013 2 of 17

Rev 11/20/2013 3 of 17

About Plugins
Every screen in a Buzztouch app is derived from a plugin. For this reason,
understanding what plugins do, how to find them, how to install them, and how to
use them is important if you want to create anything beyond the most basic app.

Some plugins are simple, some plugins are complex, but all plugins help you
extend the usefulness of an application. Using the right plugins and / or creating
your own plugins helps you make your application do almost anything you can
think of. If you can imagine it, a plugin can do it.

When you add new screens
to an app, you start by
choosing an existing plugin
from a list in the control
panel. The choices in the list
are determined by the
number of plugins installed
in your control panel. On
buzztouch.com control
panels, individual users
determine which plugins are
installed in their control
panels. On self hosted servers, the installed plugins are controlled in the Admin
Panel of the software. This means that if you want to use a plugin that does not
show up in the list of choices in your control panel, you'll need to install that
plugin before you can use it in an application. After you install a plugin, it is
available for use in all of the applications in your control panel. NOTE: If you
install a new plugin after downloading the source code for one of your projects,
that project WILL NOT contain the new plugin. This means you will need to re-
download the source code package for that application then update the
application (re-compile it in Xcode or Eclipse) so it includes the new plugin source
code. This is an important concept that many new app owners struggle with.

What plugins do
From an app owners perspective...

1. Plugins allow app owners an almost endless amount of flexibility when
creating mobile apps.

2. Plugins allow app owners to efficiently and effectively create compelling
native apps without learning complex programming languages.

3. Plugins allow app owners to save an tremendous amount of money when
making native mobile apps (compared to hiring a developer to create an
app from scratch).

Rev 11/20/2013 4 of 17

From a developers perspective...

1. Plugins allow developers and programmers to extend the functionality of the
Buzztouch platform in an endless number of ways.

2. Plugins allow developers and programmers to earn revenue by selling their
creations. This may be in the buzztouch.com Plugin Market or on a third
party website or blog.

3. Plugins allow developers and programmers a way to extend their mobile
development skills, gain exposure and credibility, and to showcase their
professional work.

Why plugins are necessary
Plugins are necessary because there is no way to predict in advance what an
applications purpose, intention, or audience is. Cookie-cutter apps and template
driven approaches can cover lots of the situations but not all of them. The fact is,
the best apps, the highest quality apps, and the most successful apps always
include unique features that set it apart from all the others. We have spent years
at buzztouch.com learning, discovering, and improving our concept of web-based
app management. In this time we have gained a deep understanding of what
works, what doesn't work, what developers want, and what end-users expect. An
organized, efficient, useful, beautiful, and oftentimes fun app is the objective. A
plugin architecture is our approach to helping you meet that objective.

Nearly every idea or feature you see in a mobile app is an extension of an
existing idea. Very few apps are genuinely unique, most are improvements or
extensions of functionality found in other apps. For non-creative apps, such as a
utility app used by a group of employees, necessary functionality becomes more
predictable.

It is much more efficient for an app developer to implement customized features
and functions by starting with an existing foundation of code. For example,
creating a map highlighting local restaurants is not unique. However,
implementing a new super-restaurant-locator with a new and exciting feature
could help set the app apart from other existing apps. For the developer, it makes
sense that the programming of the super-restaurant-locator feature would begin
by leveraging code already written in a generic, boring map. Repurposing code is
a significant time saver and the Buzztouch plugin architecture makes this
possible.

Who creates plugins
Anyone can create a plugin. In most cases, new plugins are created using the
Plugin Creator tool found in your account control panel at buzztouch.com. The
Plugin Creator Tool is only available to Buzztouch Members, not guests. However,
it is possible, and common, to create new plugins without using the Plugin

Rev 11/20/2013 5 of 17

Creator tool at buzztouch.com. In this case, it's a matter of understanding what
constitutes a Buzztouch plugin “package” and assembling that package manually.
In most cases, people that create compelling plugins identify themselves as
developers or aspiring developers.

NOTE: Plugins that are created manually (without using the Plugin Creator tool)
cannot be uploaded to a Buzztouch control panel and cannot be distributed in the
Buzztouch Plugin Market. This means that a plugin you create manually (without
using the Plugin Creator tool) will only be useful to app owners running their own
Buzztouch self hosted control panel.

It does take programming skill and experience to create sophisticated plugins. For
this reason, it is very common for new or aspiring developers to begin creating
plugins only to find that they need help with some programming before they can
finish perfecting their idea. This is normal and part of the learning process. In
many cases, plugins are created by a non-developer, then completed by a
developer hired to help complete a mobile app project.

How do I get new plugins
In most cases plugins are discovered and installed in a Buzztouch control panel
by way of the Buzztouch Plugin Market. Plugins in the market can also be
downloaded for use in self hosted control panels. Third-party websites and other
developers may also distribute plugins.

Managing Plugins in the Buzztouch control panel
The list of plugins available in a Buzztouch control panel is managed using the
Plugins screen. Each plugin icon on this screen represents a plugin that is
installed.

Installing plugins in a buzztouch.com control panel
There are two ways to add a plugin to a buzztouch.com control panel.

Rev 11/20/2013 6 of 17

1. By using the “Install” option available for any plugin displayed in the Plugin
Market (this may or may not require a fee).

2. By clicking the Create Custom Plugin option and creating a new plugin using
the Plugin Creator tool (Buzztouch Members only, Guests cannot do this).

Updating plugins in a buzztouch.com control panel
Plugin updates are common and necessary and two things happen when an
update it released.

1. buzztouch.com control panels using the plugin will be updated to the new
version. App owners that previously installed the plugin in their control
panel will have access to the new version.

2. App owners may or may not need to re-compile their application(s) source
code that uses the plugin. This will depend on the nature of the update. In
most cases a re-compile will be necessary.

Removing plugins from a buzztouch.com control panel
To remove a plugin from a buzztouch.com control panel.

1. Visit the Plugin screen in the control panel by clicking the plugin's icon.

2. Click “Remove from Control Panel” Note: Apps using this plugin that have
already been downloaded and compiled will continue to work.

Managing Plugins in a Self Hosted control panel
The Manage Plugins screen (available to admins) is used to see what plugins are
installed and to install new plugins or to remove existing plugins.

Rev 11/20/2013 7 of 17

Installing plugins in a self hosted control panel
There are three steps to install plugins.

1. Download the plugin package(s) from buzztouch.com (or from any other
location). Plugin packages are .zip archives and each .zip package contains
multiple files. Do not unzip the archives after downloading them. Each .zip
archive represents one plugin and no two .zip archives will have the same
name.

2. Click the “Add or Update Plugins” link on the Manage Plugins screen. A
screen will display that allows you to upload the .zip package(s). When you
upload a .zip package, the control panel software will verify that the
package contains all the necessary files required to make the plugin work.
Continue this process until you have uploaded all the plugins you need to
install. Note: If you upload a package that you previously uploaded you will
need to check the “Update Existing Plugin” checkbox.

3. Click the “Refresh Plugins” link. The process syncs the control panel
software with its supporting database. If you don't refresh the plugin list
after uploading new packages the list of installed plugins will not be
updated.

Updating plugins in a self hosted control panel
The steps to updating a plugin are identical to the steps to install a plugin (see
previous section). When you upload plugins that you have previously installed,
you are overwriting the existing matching plugin with the update.

It's important to understand that updating plugins in the online control panel does
not change anything in any apps that you have already compiled. Example: You
create an app with a Map Screen then publish it and distribute it. If the Map
Screen plugin is updated in the control panel, the apps that you have already
distributed will still have the “old code” from the original Map Screen plugin. This
may or may not matter, depending on the nature of the update. In some cases, it
will be necessary to re-compile and re-distribute any apps that rely on the
updated plugins code.

Removing plugins from a self hosted control panel
To remove a plugin, click “List View” on the Manage Plugins screen then use the
“remove” option. This option does not show in “Grid View”.

Plugins on the self hosted control panel's web server
If you use an FTP program to browse the file system on your web server, the
/files/plugins directory looks like this. Note the individual directories for each
installed plugin. When you initially install the control panel software, no plugins

Rev 11/20/2013 8 of 17

will exist. This is what it looks like after you've installed a few.

When you click the “Refresh Plugins” link in the control panel, the software
inspects the content of each of the folders (see previous image) then updates the
supporting database accordingly.

Using Plugins in Applications

Creating a new screen using a plugin
Plugins are used to create new screens in apps. Three steps to use a plugin...

1. Click the “Screens” link in an apps control panel.

2. Enter a nickname for the screen you're about to create.

3. Choose a plugin type from the drop-down list.

Rev 11/20/2013 9 of 17

It's important to understand that most plugins require additional configuration
after adding them to an app. Example: The Custom URL plugin in the example
image will require an internet address to function. The number of properties and
the types of information required to make a plugin work are determined by the
plugin developer. Some plugins have lots of properties, others have none. It all
depends on the purpose of the plugin.

Modifying a screen's behavior
When you add a new screen to an application, its default behavior is determined
by the plugin it is based on. The plugin developer determines this default
behavior. In most cases, the plugin will need additional configuration.
Configuration options (properties) of each screen are adjusted using the online
control panel. The sample below shows the properties for a screen named “My
Webpage.” Some plugins will have lots of flexible properties and some plugins will
have none.

Rev 11/20/2013 10 of 17

When you “save” the properties of any screen and commit the changes to the
database, it's likely that the application has changed (at least this screen has).
It's also possible that you have already compiled and distributed the application
you are now modifying. In this case, devices that have already installed the app
will need a way to “learn” about the changes you made in the online control
panel. In most cases this is handled automatically by the device and end-users
will be prompted to “refresh” the apps data.

However, it's possible that the app owner compiled, then distributed the app
without a connection to the online control panel. This could be intentionally or
unintentionally. In either case, if the app is not connected to the online control
panel, devices will have no way to know about the changes. In this situation, app
updates are only possible by manually updating the apps configuration data,
recompiling the project, then re-distributing the app to end users.

In some cases it's useful to look at the apps configuration data (use the
“configuration data” link in the apps control panel) after you make changes. This
is useful in cases when you want to see how the data changes based on your
selections.

Creating Plugins

When to create a new plugin
Creating new plugins is necessary when the available plugins will not accomplish

Rev 11/20/2013 11 of 17

what you need to do. Generally speaking, if you need a new screen type, you
need a new plugin. In many cases a new plugin is not necessary because an
existing plugin could be configured to behave in the desired manner.

Things to consider when creating new plugins
There are a few things to think about when you're considering creating a new
plugin. Among other things, consider this.

1. Does the idea of your new plugin justify an entirely new “screen type” or is
your idea related to something other than loading a new screen type. Not
all app improvement ideas are related to loading a “new screen.”

2. Does the new plugin need to work in multiple apps in the control panel or is
it very specific to one app? You may be better off creating a simple one-
time screen manually after you download the source code for a project. If
you don't plan to re-use the screen type, it may not be a good candidate for
an entirely new plugin.

3. Will you be sharing or selling the plugin so other app owners or developers
can use it?

4. Do you have the skill to create the new plugin or will you need to recruit or
hire some help?

5. Will you be using the online Plugin Creator tool to create the new plugin or
will you be creating it from scratch?

6. Will the application(s) using the new plugin require an internet connection
to work?

7. Does the new plugin rely on images, audio, video, or file system assets?

8. Does the new plugin need to work on multiple device sizes (small, large)?

9. Does the new plugin need to work on multiple platforms (iOS and Android)?

Asking yourself these questions will help you develop a strategy for taking the
appropriate steps towards developing, or hiring someone to develop the idea.

Selling or sharing plugins in the Buzztouch market
Plugin developers may choose to create plugins in an effort to earn money. This is
OK as long as the rules and guidelines explained in the Buzztouch Plugin
Developers Terms of Service. These terms can be found at the following URL:

http://www.buzztouch.com/pages/terms-plugin-developer.php

Rev 11/20/2013 12 of 17

Updating a plugin in the Buzztouch market
App owners expect plugin updates and updates are common because things tend
to move very quickly in mobile and developers make improvements constantly.
Submitting an update to an existing plugin is as easy as re-uploading a newly
updated version to the control panel.

Updating a plugin hosted on a third party website or blog
The update process is slightly different for plugins that are not distributed using
the Plugin Market (these types of plugin are used only by app owners running a
self hosted control panel).

1) Distribute your plugin by way of a download URL. This is normally a web
address on your website such as http://www.site.com/myCoolPlugin.zip

2) Include the downloadURL in the config.txt file. Also include the updateURL
in the config.txt file.

When an app owner installs the plugin in their self hosted control panel, then
opens the plugin details screen to view that plugins information, they are
presented with a “check for updates” option if the config.txt file for the plugin
includes an updateURL. The updateURL points to a simple text file on a web
server somewhere (your website) and this text file includes a simple “version
string.” When the app owner checks for updates, this URL returns the most
current version string. If the string is different than the version string in the
already installed plugin, an update is necessary. The “download latest package”
link in the control panel opens the downloadURL in the config.txt file.

This simple approach allows app owners to download the latest version of your
plugin only when necessary and relieves you from having to “tell everyone” that
your plugin has been updated.

The plugin package
Every plugin package begins the same way. This is true if the plugin was created
using the Plugin Creator tool, or if the plugin was created manually. Either way,
the package is the same. A plugin package contains some standard files and
several optional sub-directories. It's important that the file names of the standard
plugin files match precisely what is displayed in the graphic. File names are case
sensitive and must include the file extension. A plugin may optionally contain a
number of additional files, media, and resources as determined by the plugin
developer.

Rev 11/20/2013 13 of 17

Standard Plugin files are:

config.txt, config_cp.txt, readme.txt, icon.png, /source-android-VERSION,
/source-ios-VERSION, /screenshots

Each standard file or sub-
directory in the plugin package
has a specific purpose.

config.txt: This file contains
important information about the
plugin used by the control panel
for several things. The config.txt
file serves as a sort of manifest
for the plugin and it's essential
that its information be accurate.

readme.txt: This file contains information intended for humans. Its purpose is to
explain in plain-language how the plugin works, what its purpose is and why
somebody would want to add it to their control panel. In essence, the readme.txt
file serves as the instruction manual for the plugin.

icon.png: This is a 50 x 50 .png image that displays in the online control panel.

config_cp.txt: This is a simple text file that describes how the control panel
should render the plugin management screen (used by app owners).

/source-android-VERSION: This sub-directory contains all the required
resources for the Android version of the plugin to work. This is usually only two
files but may be more. The two required files in this folder are the Android
Activity Class (a .java class file) and the Android Layout file (a .xml layout file).
Additional files in this folder may be graphics, audio, and other supporting .java
code or .xml layout code. IT IS IMPORTANT TO UNDERSTAND THAT THE ANDROID
FILES ARE BROKEN INTO SEVERAL SUB-DIRECTORIES. EXPLORE AN EXPSITING
PLUGIN PACKAGE TO SEE THIS STRUCTURE. The structure is not arbitrary, it
matches the structure of a typical Android project.

/source-ios-VERSION: This sub-directory contains all the required resources for
the iOS version of the plugin to work This is usually only two files but may be
more. The two required files in this folder are the UIViewController's .m and .h
files. Additional files in this folder may be graphics, audio, and other supporting
Objective-C objects necessary to support the UIViewController.

/screenshots: This optional sub-directory contains screenshots displayed in the
control panel. When creating screenshots, export them as lightweight .png files.
If you screen-capture the simulator running you'll end up with images around 396
x 744 which is appropriate. Do not include any thumbnail versions of the
screenshots, the control panel will create these automatically.

Rev 11/20/2013 14 of 17

Understanding the config_cp.txt file
The webpage that shows in the control panel is configured by way of rules
contained in the config_cp.txt file. This file has a list of “sections” that show on
the webpage. Each section represents an option or value that the app owner can
adjust. Some sections are standard, others are custom. Most plugins contain a
mixture of standard and custom sections.

{"propertySections":[
{"fileType":"bt_section", "fileName":"btSection_navBar.html"},
{"fileType":"bt_section", "fileName":"btSection_login.html"},
{"fileType":"custom", "fileName":"myCustomSection.html"},
{"fileType":"bt_section", "fileName":"btSection_backgroundColor.html"},
{"fileType":"bt_section", "fileName":"btSection_backgroundImage.html"},
{"fileType":"bt_section", "fileName":"btSection_search.html"},
{"fileType":"bt_section", "fileName":"btSection_tabBar.html"},
{"fileType":"bt_section", "fileName":"btSection_screenJson.html"}

]
}

Note the standard sections, along with one custom section. The
myCustomSection.html file would be included in the plugin package. This was
created by the plugin developer. This is NOT a complete .html web page, it is only
a snippet of HTML. The control panel will include this snippet when the app
owners lands on the webpage used to control the plugin.

Standard Sections. Include these without writing code.

btSection_ads.html
btSection_backgroundAudio.html
btSection_backgroundColor.html
btSection_backroundImage.html
btSection_childItems.html
btSection_dataURL.html
btSection_documentBehavior.html
btSection_login.html
btSection_menuListLayout.html
btSection_menuListRows.html
btSection_navBar.html
btSection_nickname.html
btSection_screenJson.html
btSection_search.html
btSection_tabBar.html

Rev 11/20/2013 15 of 17

When creating custom sections it's normally best to copy a standard section and
modify it to your needs.

Custom Sections use Javascript to modify control panel data. The landing page for
a plugin is hosted by the control panel and includes sections for each plugin. This
landing page exposes some Javascript variables and functions that plugin
developers use to modify data.

Javascript Variables available to developers when creating custom sections.

userGuid the unique id of the user using the control panel.
AppGuid the unique id of the application in the control panel.
BT_itemId the unique id of the screen in the control panel.
screenDataURL the URL to this screens data if childItems are used.
JSONString the complete JSON string of data configured for this screen.

It's necessary to know these values when working with the javascript functions.

fnFillFormValues(JSONString)

This method is used to pre-populate the form field elements on the landing
page. This is normally fired when the page first loads so the app owner sees their
previously saved settings.

fnExpandCollapse(hideOrExpandElementId)

This method is used to expand or collapse an HTML container. Consider a n
html div or paragraph element that expands and collapses when clicked.

function saveJSONProperties(showResultsInElementId)

Triggering this method will save all the users selections to the database.
The properties and values that are saved are mapped directly to the form field
elements on the landing page. All form elements who's names are prefixed with
“json_” will be saved. Example: json_dataURL or json_firstName. The dataURL
and the firstName entry would be saved to the backend. In almost all cases the
submit button's in each section call this routine to save all the user selections.

fnSetSelectedIndex(theEl, theValue)

A simple helper routine to manually set the selected index of a drop down
element. An HTML <select> element.

Rev 11/20/2013 16 of 17

fnPickColor(formFieldId)

This opens the color picker screen. When a color is selected the value is
inserted into the form field on the underling landing page.

fnPickScreen(BT_itemIdElementName, nicknameFormElementName)

This opens the screen picker. This is normally used when app owners select
screens to use on button clicks.

fnPickMenu(BT_itemIdElementName, nicknameFormElementName)

This opens the menu picker. This is normally used when app owners select
context menus on individual screens.

fnPickFileName(BT_itemIdElementName, nicknameFormElementName)

This opens the file picker. This is normally used when app owners select file
names for images and other file based assets.

fnPickFileURL(BT_itemIdElementName, nicknameFormElementName)

This opens the file picker. This is normally used when app owners select file
URL's for images and other file based assets.

fnExecuteBackendCommand(theCommand)

This method is used to interact with backend data. The command value you
pass can be one of several options. Options include:

getPluginOptions Returns a list of installed plugins for the user.
getChildItems Returns a list of JSON objects for childItems.
addChildItem Used to insert new childItems for a screen.
removeChildItem Used to remove a child item for a screen.
updateChildItemsOrder Used to modify the orderIndex of child items.

In most cases it's best to review how other existing plugins use these methods
before trying to use them yourself (unless you're an experienced javascript dev).
The most complicated set of routines are related to childItems. Screens that
display a list of child items are more complex than other screens and as such the
plugin developer needs to understand how to add / remove items on the screen.

Rev 11/20/2013 17 of 17

	About Plugins
	What plugins do
	Why plugins are necessary
	Who creates plugins
	How do I get new plugins

	Managing Plugins in the Buzztouch control panel
	Installing plugins in a buzztouch.com control panel
	Updating plugins in a buzztouch.com control panel
	Removing plugins from a buzztouch.com control panel

	Managing Plugins in a Self Hosted control panel
	Installing plugins in a self hosted control panel
	Updating plugins in a self hosted control panel
	Removing plugins from a self hosted control panel
	Plugins on the self hosted control panel's web server

	Using Plugins in Applications
	Creating a new screen using a plugin
	Modifying a screen's behavior

	Creating Plugins
	When to create a new plugin
	Things to consider when creating new plugins
	Selling or sharing plugins in the Buzztouch market
	Updating a plugin in the Buzztouch market
	Updating a plugin hosted on a third party website or blog
	The plugin package
	Understanding the config_cp.txt file

