
1

buzztouch for Android

A User’s Guide

By GoNorthWest

June 2012

2

Table of Contents

1. Welcome!

2. Sign Up For buzztouch

3. Basic Hardware and Software Requirements

4. Setting Up Your Android Development Environment (Mac OS X)

5. Setting Up Your Android Development Environment (Windows)

6. Configuring Your Android Virtual Device (AVD)

7. Compiling and Running Your App

8. Adding Files To Your Project

9. All About Keystores and Signing

10. Getting A Google Maps API Key

11. Publishing Your App to Google Play

12. Common Problems and Solutions

13. Problem Reporting and Basic Debug

14. Final Thoughts

3

Chapter 1

Welcome!

So, you’ve stumbled across buzztouch, the most amazing app development site on the entire Internet

(probably in the entire universe as well!), and you’re super stoked to get to work and send your ideas

out to the world! Very cool! When I came across the site, I just wanted to get my app developed and out

to the masses. But it turns out that the whole process is a bit more involved than just designing your app

on buzztouch and then releasing it on the market. You need to download the source code, compile it,

test it in a simulator and a real device (if you have one), sign it, and upload it to the appropriate market.

This may seem like a lot of work, and it is, but it’s not as hard as you might think. The purpose of this

guide is to walk you step-by-step through the process of signing up for buzztouch, creating your app,

setting up your Android development environment, and publishing your app for users to download.

Hopefully this guide will help even the most inexperienced of users get up and running quickly and

painlessly!

This book will be free to begin with. I do know that some people feel better if they can send something

my way, so here are two methods you can use to do that. Like I said…nothing is expected, but

everything is greatly appreciated!

PayPal Donation:

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=EC3HPWYK9QH96

Amazon.com Wish List:

http://amzn.com/w/1Y1ZG2R9UQCXC

Ready to start? Good! Let’s go!

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=EC3HPWYK9QH96
http://amzn.com/w/1Y1ZG2R9UQCXC

4

Chapter 2

Sign Up For buzztouch

It would be easy to assume that you’ve already signed up for buzztouch at this point, and perhaps you

have, but it’s entirely possible that you’re reading this book to get an idea of what it’s all about. Fair

enough. If you haven’t signed up for buzztouch yet, and you’re ready to take the plunge, then head over

to this link and complete your registration:

http://www.buzztouch.com/pages/register.php

Once you have created the registration form, a confirmation email will be sent to you with a link to a

confirmation screen. Click that link, and you’ll be confirmed and ready to go! Now, and in the future,

head to the following link and sign in to your account:

http://www.buzztouch.com/pages/login.php

You’re now signed up and ready to start developing your Android applications! But wait…I think it would

be highly worth your time to spend some time at buzztouch U!

Time for buzztouch U!

Now that you’ve signed up for buzztouch, you absolutely should block out some time and go through

the videos at buzztouch U. You can find them here:

http://www.buzztouch.com/account/btu.php

You should start with the buzztouch Learning Path so you fully understand what buzztouch is about, and

how to operate within it. After that, it’s your choice on either the iOS or Android path. I’m assuming

since you’re reading this book that you’ll want to follow the Android Learning Path. In those 9 lessons,

you will learn a ton about Android, Eclipse, and how programming works in general. You’ll be amazed at

the things you’ll walk away with!

This book should be used in conjunction with the buzztouch U videos. It is NOT meant to replace the

learning that can be found in those videos; rather, it is meant to help get you through some of the

various problems that inevitably come up during the development process. You cannot go wrong by

taking the time to engage in buzztouch U!

http://www.buzztouch.com/pages/register.php
http://www.buzztouch.com/pages/login.php
http://www.buzztouch.com/account/btu.php

5

Chapter 3

Basic Hardware and Software Requirements

In order to develop apps for Android devices, there are some things that must be put into place first.

buzztouch enables you to “design” your app, and then provides the source code for your project, but

you then have to compile, test, and submit your app to the appropriate marketplace. In order to do

that, your development environment must meet some minimum requirements.. So, here we go with a

list of what you need to have in order to make your app dreams come true!

□ A Windows or Linux PC, or a Mac. The awesome thing about the Android development

environment is that it’s available on Windows, Linux or Mac. So, if you want to develop iOS and

Android applications, getting a Mac will help you do both. If you are interested in just Android

apps, then your current PC is probably up to the task.

□ Eclipse + Android SDK. Eclipse is the Integrated Development Environment (IDE) for Android,

and Google provides the Android Software Development Kit (SDK). You need both of these in

order to compile the projects you get from buzztouch. Both have packages that run on

Windows, Linux or Mac.

□ Membership in Android Market or Amazon.com Appstore for Android. Technically speaking,

this is not a requirement for distributing your apps to the world. All you need for that is a

development certificate (which you can generate for free, unlike with Apple), and a way to get

your apk file to somebody. But, if you want to use the conventional method for distributing your

app, and increase your chances of making money from it, you’ll probably want to join one of

these programs.

□ A device to test on. OK…this is not an absolute requirement, but testing your app on more than

just the Android emulator is very important. An emulator is just that…it emulates what a real

device is like. If you don’t have a real device, find a friend that does and have them test it…it’s as

simple as emailing the apk to them or posting it on the web. Or, post a message on the

forum...lots of people are willing to help out.

□ Willingness to explore and learn. Despite how accessible buzztouch has made app

development, it’s not as easy as you might think, and Android apps have their fair share of

issues in the development process. It’ll be immensely helpful to yourself, and to those who

eventually respond to your questions in the forums, if you have spent some time trying to learn

the required skills by utilizing the resources already out there. Please don’t expect us to lead you

step-by-step through the process if you’re not willing to give it a go first. You’ll learn and

understand more in the long run if you spend some time trying to work it out on your own first.

It’s far more rewarding that way!

6

Helpful Resources

□ Eclipse : http://www.eclipse.org/

□ Android SDK : http://developer.android.com/sdk/index.html

□ buzztouch Forum : http://www.buzztouch.com/forum/

□ buzztouch Videos : http://www.buzztouch.com/videos/

□ Setting up your Android Dev Environment :

http://www.buzztouch.com/resources/Setting_Up_Your_Android_Development_Environment_

v1.1.pdf

□ Problem Reporting and Basic Debugging :

http://www.buzztouch.com/resources/Problem_Reporting_and_Basic_Debug_v1.0.pdf

http://www.eclipse.org/
http://developer.android.com/sdk/index.html
http://www.buzztouch.com/forum/
http://www.buzztouch.com/videos/
http://www.buzztouch.com/resources/Setting_Up_Your_Android_Development_Environment_v1.1.pdf
http://www.buzztouch.com/resources/Setting_Up_Your_Android_Development_Environment_v1.1.pdf
http://www.buzztouch.com/resources/Problem_Reporting_and_Basic_Debug_v1.0.pdf

7

Chapter 4

Setting Up Your Android Development Environment (Mac OS X)

Setting up the Android development environment can be a bit…well…challenging if you don’t have all

the pieces in place before you start. The aim of this chapter is to visually walk you through the process

of downloading what you need, installing it, and making the correct configurations. Once you do that,

you’re all set to actually work with the source code you download from buzztouch! Hopefully these

instructions will make things just a bit easier for you!

The basic process you are about to undertake is the following:

1. Download the required software

2. Unzip and move the Android SDK to the desired location

3. Unzip and move the Eclipse IDE to the desired location

4. Install the ADT Plugin for Eclipse

5. Configure the Android SDK for Development Tools and Google API

6. Configure the Android Virtual Device (AVD)

7. Celebrate because you’re done and ready to work with your app!

Note: This tutorial assumes a fresh install of all software components. If you’ve got a previous install,

consider deleting all the folders and starting fresh. But remember to copy over any extra files or keys

you may have created!

Let’s get started!

1. Download required software. In order to make this all work, there are several pieces of

software you have to download and install:

a. Eclipse: I chose to download Eclipse Classic 3.7.2, which was the most recent version

available at the time of this writing. I downloaded the 32-bit version for Mac OS X, but

there is also a 64-bit version if you are running 64-bit OS X. Here are the links I used to

get this package.

http://www.eclipse.org/downloads/?osType=macosx

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-

3.7.2-201202080800/eclipse-SDK-3.7.2-macosx-cocoa.tar.gz

http://www.eclipse.org/downloads/?osType=macosx
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-macosx-cocoa.tar.gz
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-macosx-cocoa.tar.gz

8

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-

3.7.2-201202080800/eclipse-SDK-3.7.2-macosx-cocoa-x86_64.tar.gz

b. Android Development SDK: This is the software development kit (SDK), much like the

iOS SDK for iPhones/iPads, that must be used within Eclipse for development. Here are

the links I used for this portion.

http://developer.android.com/sdk/index.html#installingplugin

http://dl.google.com/android/android-sdk_r17-macosx.zip

http://developer.android.com/sdk/eclipse-adt.html#installing

c. Java JDK: Windows has the requirement of a JDK, but it appears that the Java that

comes with Mac OS X is enough for our needs here. So, there is nothing you need to

download. If you want to check what version of Java is running on your computer, you

can open a console window and type ‘java –version’ and you’ll get something like the

following:

d. Once you get all the software downloaded, you should have a file listing that looks

something like this :

2. Install the Android SDK (android-sdk_r17-macosx.zip). To install the Android SDK in Mac OS X,

all you need to do is unzip the package that you downloaded, and place it wherever you want to

on your system. I chose to put the folder in the Applications folder, but I don’t think it much

matters. You may have to adjust a few things that come later depending on where you place the

folder.

Begin by right-clicking on the package you downloaded (I put mine on the Desktop), and using

the Archive Utility to extract the files.

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-macosx-cocoa-x86_64.tar.gz
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-macosx-cocoa-x86_64.tar.gz
http://developer.android.com/sdk/index.html%23installingplugin
http://dl.google.com/android/android-sdk_r17-macosx.zip
http://developer.android.com/sdk/eclipse-adt.html#installing

9

After you have extracted the files, you’ll see a newly created folder called android-sdk-macosx.

Drag that folder to wherever you want. Like I mentioned, I put it in the Applications folder.

3. Install Eclipse IDE (eclipse-SDK-3.7.2-macosx-cocoa.tar.gz). To install the Eclipse IDE in Mac OS

X, you again simply need to extract the files from the zipped tar package, and then move them

to wherever you want Eclipse to reside. And, again, I chose that location to be the Applications

folder.

Begin by right-clicking on the package you downloaded and using the Archive Utility to extract

the files.

After you have extracted the files, you’ll see a newly created folder called eclipse. Drag that

folder to wherever you want. I put mine in the Applications folder.

10

You’re done installing Eclipse and the Android SDK. Now it’s time to install the ADT Plugin for

Eclipse.

4. Install the ADT Plugin for Eclipse. This part of the procedure installs the Android Development

Tools (ADT) plugin for Eclipse. It’s what ties together Eclipse and the Android SDK. You install it

via Eclipse, using the Help…Install New Software menu of Eclipse.

First thing is to fire up Eclipse. Double-click on the Eclipse executable in the Applications/Eclipse

folder (or wherever you put it), and you’ll see the Eclipse splash screen. The first thing you’ll

have to decide is where to configure your workspace. Unless you have a reason to change from

the default, go with what it suggests.

One you have that set, and hit OK, the main Eclipse screen should come up. Do a happy dance

now, because this is proof positive that Eclipse is installed on your system!

11

Now you want to go to Help…Install New Software, and configure the screen to hit the correct

software repository. Here is the initial screen you’ll get.

12

I cut off the bottom part of the actual screen you’ll get to save space. The important stuff is at

the top of the screen anyway. See the Add button on the right-hand side near the top? Click that

puppy, and here’s what you’ll get.

OK, that’s not totally what you’ll get. You’ll need to type in both the Name (ADT Plugin for

Eclipse) and the Location (https://dl-ssl.google.com/android/eclipse/). Now you can hit OK.

After a few seconds it’ll connect to the Google site, and then you’ll see this screen (again,

cropped for space).

Go ahead and hit Select All as I’ve done in this example. To be honest, I don’t know if you

absolutely need everything here, but I figured better safe than sorry! Hit Next to review the

Install Details.

13

Hit Next again, and select “I accept the terms of the license agreements.” That should enable

the Finish button, which you should now hit. The following screen will pop up, which indicates

you are now installing the software!

In the course of the install, you may see the following security warning. Just go ahead and hit OK

and things will proceed.

At this point, you may get a series of errors, and one of them may look like this.

14

Click on Open Preferences, and see this screen (cropped for space).

Click on Browse and navigate to where you put the Android SDK folder. In my example, it’ll look

like this (cropped!).

Click Apply, then OK, and you’re all done! Now it’s time to configure the Android SDK for

Development Tools and the Google APIs. You’re almost done!

5. Configure the Android SDK for Development Tools and Google API. This is where you configure

the Android SDK Manager to download the tools you will need to create buzztouch apps. This is

essentially downloading the Google API's Platform 2.2 and API level 8. Keep in mind a common

mistake, as pointed out in the Readme file provided by buzztouch with your Android source

code : “A common mistake is to assume Android 2.2 API's and Google 2.2 API's are the same,

they are not.” This is important to keep in mind…if you grab the wrong ones, you won’t be able

to get your program to work.

Start by bringing up the Android SDK Manager in Eclipse. Do this by starting Eclipse, then going

to Window…Android SDK Manager. The following screen will appear, and your goal is to make

15

it look like the image you see here. Select what I selected, and you’ll be good for both buzztouch

v1.4, v1.5 and v2.0 apps.

Now click Install 6 packages (or whatever number you end up having), and you’ll get this screen.

16

Click on the Accept All radio button, which should turn all the checkmarks in the packages list to

green. Now hit Install.

Watch the log until it says you are done and you can close. Then hit Close. This part of the

process may take some time depending on the speed of your Internet connection, so feel free to

grab a coffee or something to pass the time with.

Once the install is done, and it says you can hit Close, you’ve successfully installed the Android SDK,

Eclipse, and the ADT Plugin for Eclipse! You are basically done, unless you want to create an Android

Virtual Device (AVD), or emulator, as it’s often called. If you’re ready for that, head on over to Chapter 6:

Configuring Your Android Virtual Device (AVD).

Congratulations on making it through one of the more difficult parts of developing for Android!

Hopefully this chapter has made it as painless a process as possible.

17

Chapter 5

Setting Up Your Android Development Environment (Windows)

Like I said in the previous chapter, setting up the Android development environment can be a

bit…well…challenging if you don’t have all the pieces in place before you start. The aim of this chaper is

to visually walk you through the process of downloading what you need, installing it, and making the

correct configurations. Once you do that, you’re all set to actually work with the source code you

download from buzztouch! Hopefully these instructions will make things just a bit easier for you!

The basic process you are about to undertake is the following:

1. Download the required software

2. Use the installer package to install Java Developers Kit (JDK)

3. Use the installer package to install the Android SDK

4. Configure the Android SDK for Development Tools and Google API

5. Unzip and move the Eclipse IDE to the desired location

6. Install the ADT Plugin for Eclipse

7. Configure the Android Virtual Device (AVD)

8. Celebrate because you’re done and ready to work with your app!

Note: This tutorial assumes a fresh install of all software components. If you’ve got a previous install,

consider deleting all the folders and starting fresh. But remember to copy over any extra files or keys

you may have created!

Let’s get started!

1. Download required software. In order to make this all work, there are several pieces of

software you have to download and install:

a. Java JDK: Eclipse requires a Java Development Kit (JDK). You have to use the Java

Developers Kit here…not just the Java Runtime Engine (JRE), which most of you already

have installed. This is a very crucial distinction…without it, things will not work. Here are

the links I used for this download, and I grabbed Java SE Development Kit 7u4 which was

the latest version at the time of this writing.

http://download.oracle.com/otn-pub/java/jdk/7u4-b22/jdk-7u4-windows-i586.exe

http://download.oracle.com/otn-pub/java/jdk/7u4-b22/jdk-7u4-windows-x64.exe

http://download.oracle.com/otn-pub/java/jdk/7u4-b22/jdk-7u4-windows-i586.exe
http://download.oracle.com/otn-pub/java/jdk/7u4-b22/jdk-7u4-windows-x64.exe

18

b. Eclipse: I chose to download Eclipse Classic 3.7.2, which was the most recent version

available at the time of this writing. I downloaded the 32-bit version for Windows, but

there is also a 64-bit version if you are running 64-bit Windows. Here are the links I used

to get this package.

http://www.eclipse.org/downloads/?osType=win32

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-

3.7.2-201202080800/eclipse-SDK-3.7.2-win32.zip

http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-

3.7.2-201202080800/eclipse-SDK-3.7.2-win32-x86_64.zip

c. Android Development SDK: This is the software development kit (SDK), much like the

iOS SDK for iPhones/iPads, that must be used within Eclipse for development. Here are

the links I used for this portion.

http://developer.android.com/sdk/index.html

http://dl.google.com/android/installer_r18-windows.exe

http://developer.android.com/sdk/installing.html

Once you get all the software downloaded, you should have a file listing that looks something like this:

2. Use the installer package to install Java Developers Kit (JDK)

Double-click on the JDK install package you downloaded from above, and follow the prompts.

This MUST be installed before you can install the Android SDK…without it, SDK installation will

fail. Your install screens should look something like the following:

http://www.eclipse.org/downloads/?osType=win32
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-win32.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-win32-x86_64.zip
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.7.2-201202080800/eclipse-SDK-3.7.2-win32-x86_64.zip
http://developer.android.com/sdk/index.html
http://dl.google.com/android/installer_r18-windows.exe
http://developer.android.com/sdk/installing.html

19

Notice it says the JavaFX SDK will be installed following the JDK installation. You don’t need that

for Android development, so when the time comes for that, you can hit cancel with no

problems.

20

The screen above gives you the option on where to install the JDK (if you have a preference),

and what components you want. Just go with the defaults unless you have a reason to change,

and are comfortable making that selection.

Kick back and watch the progress meter…it’ll go fairly quickly. Once its done, you’ll see the

screen below, and you can hit continue to finish up!

21

At this point it’ll ask you about installing JavaFX SDK. You don’t need it, so you can hit Cancel

safely, and you’re done. The first piece of the puzzle is now in place!

3. Use the installer package to install the Android SDK

Now it’s time to install the Android Software Development Kit (SDK). You might be thinking to

yourself that you need to install Eclipse first, but that’s not true, and we can save that for later

on. In fact, it’s the Android Development Tools (ADT) plugin for Eclipse that actually ties the

Android stuff to Eclipse, so we have plenty of time to get things in order.

Double-click on the Android SDK install package you downloaded from above, and follow the

prompts. Your install screens should look something like the following:

Hit Next, and you’ll see the screen below. Sometimes, for reasons unknown, it will fail to find a

JDK, even though there is one installed. If that happens to you, just hit the back button, then

Next again, and it may resolve itself. See this link for an explanation of the problem:

http://stackoverflow.com/questions/4382178/android-sdk-installation-doesnt-find-jdk

http://stackoverflow.com/questions/4382178/android-sdk-installation-doesnt-find-jdk

22

The install program has found the JDK, so we’re good to go. Hit Next to proceed with the install

process.

23

In this screen you are asked to select the install location for the Android SDK. You can change it

if you’d like, or retain the default. I choose to retain the defaults.

Now you’re given the opportunity to create a Start Menu Folder for the Android SDK Tools. I

generally accept the defaults here, and then hit Install.

24

The install will go pretty quickly, and then you’ll be presented with the following screen. You

can, if you’d like, choose to Start SDK Manager and download the API’s necessary for working

with buzztouch. Since things are going well up to this point, let’s keep rolling with it. Leave that

box checked, and hit Finish.

4. Configure the Android SDK for Development Tools and Google API

This is one of the most important parts of setting up your Android development environment. It

is during this procedure that you will be selecting, downloading and installing the Google APIs

that are necessary for compiling and running your app. Android development is a bit confusing

in that there are Android APIs, and Google APIs that can be used for development. The essential

difference is that the Google APIs include the Google Maps API, which is necessary for Location

Map screens. The Android API only includes core Android APIs, and does not support all the

functionality that buzztouch provides. So, it’s vitally important that for buzztouch v1.4, you

select the Google APIs under Android 1.6 (API 4), and for buzztouch v1.5 and v2.0, you select the

Google APIs under Android 2.2 (API 8). The exact items you need are highlighted below. Make

sure your screen looks like the following one.

25

It should be noted that you can…and probably should…use Google APIs that are newer than the

required ones. You just need to make sure your AndroidManifest.xml file reflects the

requirements. But that’s for another tutorial.

Remember: Google APIs and Android APIs are not the same! Don’t make the mistake of thinking

they are, or your app won’t compile. This is one of the most common mistakes seen on the

buzztouch forums.

Once you have the correct items selected as noted above, hit Install x packaged (where x is

however many you have), and then you’ll get the following screen. Hit the Accept All radio

button so that all the packages listed have a green checkmark next to them. You’re essentialy

accepting licenses for these packages here…nothing worth reading!

26

Now that you’ve hit install, you’ll see a progress indicator. Even with a fast Internet connection,

this is going to take quite some time. So, take a few minutes…hop online and order me a case of

Fruit Punch SoBe…and before you know it, the green progress indicator you see below will be all

the way full!

Pretty soon you’ll see a “Downloading packages complee” notification, and you’re done! Verify

that all the packages you want show as installed.

27

You’ve now completed the installation and configuration of the Android SDK. Congratulations!

Time to move on to the next step!

5. Unzip and move the Eclipse IDE to the desired location

This is the easiest thing you’ll do today. Simply unzip the package you downloaded into the

folder of your choice. I recommend c:\eclipse. Your folder structure should now basically look

like what you see below. The eclipse.exe file is what you launch to start the program. Feel free

to create a shortcut on your desktop, or pin it to your Start Menu (which I did). You’ll want to

run this program as Administrator.

28

See, I told you that was easy! If you’re stuck because you’re not sure how to unzip something, I

recommend heading to http://winrar.soft32.com/free-download and downloading WinRAR. It

allows for right-clicking on a zip file and deciding where to unzip it to. Cool stuff!

6. Install the ADT Plugin for Eclipse

We now need to install the Android Development Tools for Eclipse. This is a pretty simple

process, and doesn’t take too long. It’ll give you the extra few things you need for developing

Android applications (remember that Eclipse is an IDE capable of developing many, many

things). But without these tools, you simply cannot tie together the Android SDK and Eclipse for

use in developing apps.

Start Eclipse by double-clicking on the Eclipse icon you created earlier. After Eclipse has

launched go to Help…Install New Software

This will bring up the following install dialogue box. You’ll see that there is no site selected, and

thus no option on which software to install.

http://winrar.soft32.com/free-download

29

Click the Add… button and the you’ll get this:

Specify the same information you see above. For clarity, the link you want is:

https://dl-ssl.google.com/android/eclipse. You can give it whatever name you want. Hit OK.

Once you’ve done that, you’ll get the following screen:

https://dl-ssl.google.com/android/eclipse

30

Well, that’s half the screen, but you get the picture! These are your options for install, and it

includes the Android Development Tools (ADT). I went ahead and selected everything figuring I

may need some of the other stuff in the future. Hit Next.

This screen verifies the details of what you are going to install. Hit Next.

31

If you feel the need, review the licenses for the stuff you are going to install here. Most

important point on this screen is to select I accept the terms of the license agreements. If you

don’t, you won’t be able to install. Hit Next.

32

Congratulations! ADT is now installing! Sit back and relax…at least until you see this screen:

Nothing to be worried about here. Just hit OK and move on. It’s all good. After install is done,

the program will ask if you would like to reset Eclipse so the changes can take effect. Say Reset

Eclipse, wait for it to restart, and you can move on to the next step.

At this point, you are basically done, unless you want to create an Android Virtual Device (AVD), or

emulator, as it’s often called. If you’re ready for that, head on over to Chapter 6: Configuring Your

Android Virtual Device (AVD).

Congratulations on making it through one of the more difficult parts of developing for Android!

Hopefully this chapter has made it as painless a process as possible.

33

Chapter 6

Configuring Your Android Virtual Device (AVD)

Now that you have the Android development environment set up and configured, you’re ready to start

building and testing your programs. But, while it’s preferable to test your app on an actual device, it’s

possible that you don’t have one. In comes the Android Virtual Device to the rescue!

Keep in mind, however, that the AVD is an emulator…it emulates what an actual device would do. And

while it is super useful in helping you test and debug your app, it cannot do some things that a real

device can do like use GPS to get real coordinates. So, there will be limitations to what you can

accomplish with the AVD, but it you keep that in mind, and also try to find a real device to test on, this

can still be a super valuable weapon in your development arsenal.

Enough blather…let’s get on to creating an AVD!

To begin, go to Windows…AVD Manager.

34

This will bring up the AVD Manager screen, which, since you currently have no AVDs configured, will

look like this:

There are two different AVDs that you could create…one for buzztouch v1.4, and one for buzztouch

v1.5/v2 Since they both use different Google APIs, You’ll have to create one for each if you develop for

both. If you are only doing one or the other, then you only need to create an AVD for that particular

version of buzztouch.

In order to create an AVD for buzztouch v1.4, click New… and fill in the information like you see below:

35

You can adjust the size of the SD Card to your liking, but I choose to keep it near the minimum 9MB,

simply because I’m not using the SD Card feature, and because it loads faster with a smaller SD Card

configured. I also leave the default Built-in skin of WVGA800, but you can change the resolution to a

device size of your liking.

In order to create an AVD for buzztouch v1.5/BT Server 2.0, click New… and fill in the information like

you see below:

36

You can adjust the size of the SD Card to your liking, but I choose to keep it near the minimum 9MB,

simply because I’m not using the SD Card feature, and because it loads faster with a smaller SD Card

configured. I also leave the default Built-in skin of WVGA800, but you can change the resolution to a

device size of your liking.

Now that you are done creating your virtual devices, your Android Virtual Device manager should look

something like what you see below. The important thing is that the correct Google APIs are selected for

the version of buzztouch that you are using, and that there is a green checkmark next to each virtual

device, indicating that it is good.

37

At this point you are done defining your AVD. You can launch an AVD by selecting it from the panel

above, and hitting the Start button. Or, you can open up a command prompt (Windows) or terminal

window (Mac), navigate to the tools folder of your Android SDK installation, where you will see various

emulator executables. Then you can type in the following command to launch your emulator (launching

the v1.5 emulator in this example):

emulator @buzztouch_v1.5

Launching the emulator is super, super, super slow, and sometimes times out if you are trying to do it

from within Eclipse and install your app at the same time. There is no known fix to this yet. Sometimes

you’ll just have to exit the emulator and start again!

Depending on the version of the emulator that you started, you should get a screen that looks like the

following. To unlock, using your mouse, just pull the lock graphic to the right!

38

At this point, just start playing around with it to see what it can do. The buttons on the right side of the

emulator represent keys on a device (usually a phone). The Home (house) key will take you to the main

screen. The Menu key will present you with any menu options for your current screen (and is a way to

refresh your app). The Arrow button will take you back a screen.

Have fun playing around! There’s lots you can do here, and at the very least, you should test each and

every one of your Android apps on the emulator!

39

Chapter 7

Compiling and Running Your App

The time has come for you to actually run and potentially use that Android app you have spent so many

hours creating at buzztouch! Your environment is ready…you have an Emulator all set up and ready to

go…and you’ve downloaded your source code from buzztouch, so you’re ready to compile your app.

Cool!

Wait…what? Source code? Compile? What the heck am I talking about, you ask?!

This is a slight digression, but something I think worth spending a few words on. The buzztouch website

allows you to define and connect the screens and content for an Android application. This is done

through screen creation, media uploads, a method to link it all together as well as the ability to tweak all

kinds of app parameters (background color, email functionality, GPS, etc). Some people might think that

after the app has been “designed” on buzztouch, it’s ready to download and send to the store.

Not quite.

What buzztouch gives you after you have designed your app is a package of files – source code – that

can be used to build the final app. That source code contains all the necessary information to create an

app with the screens you described, as well as interact with the user in the way you intend. But, by itself,

the source code can’t do anything. That’s where Eclipse and the Android SDK come in. Using your Eclipse

environment, you will import your project from buzztouch, compile your code (translate the code into

instructions the device can understand), sign your app (so people can be confident it really came from

you), and create the apk file (which is the final “binary” that you load on your device, or submit to

Google Play). Seems a bit complicated, but it’s not. That’s all you really need to understand. So, let’s get

started. We’ll start by showing you how to download your source code, and then look at two methods

for getting your project into Eclipse and exiting with an apk.

Downloading Source Code

As we discussed above, you’ll need your source code package in order to compile your all. Getting that is

pretty simple! Here are the steps:

1. Log into buzztouch.com

2. Click on your account name

3. Click on Applications

4. In the list of applications you are presented with (assuming you have created one!), click on the

application you want source code for

40

5. Click “Download Project Source Code”

6. Click “Prepare Package For Download” (Android option is on the right side of the screen)

7. Watch it prepare your package and be amazed at the process!

8. Click “Download zip archive (x.x MB)”

9. Save the package to a location you will remember!

10. Go to the zipped package and unzip it using a program like WinRAR for Windows, or Archive

Utility for Mac.

You now have an unzipped copy of your source code. If you are interested, take some time and look

around the contents…you can’t hurt anything by just looking! You’ll see a number of folders, many of

them with various .java files in them. This is the code that actually does the things that you want your

app to do (but you know that anyway, since you’ve completed buzztouch U by this point!). You’ll also

see, in the assets folder your BT_Config.txt file. This is the JSON file that literally defines almost every

aspect of your app…something else you already know from doing buzztouch U (getting the hint here!?).

Lots of stuff to explore in these packages, so take some time, check things out, and try to get a better

understanding of what’s going on under the hood.

OK…time to bring your project into Eclipse and get some work done!

Method One: Import Your Project

When you download your Android code package from buzztouch, you’re essentially getting a complete

project. All the files you need are contained in the zipped folder you get. So, importing your project into

Eclipse is as easy as specifying the folder location, proving a bit of info, and hitting OK! Let’s get started!

1. Start Eclipse. Start Eclipse by either double-clicking on the icon you set up for it somewhere, or

double-clicking on the eclipse.exe file that is found in your installation path. For me, it’s at

c:\eclipse\eclipse.exe (on a Windows machine).

2. Import Your Project.

a. Go to File…Import.

41

b. From the resulting dialogue box, expand General if necessary, and then select Existing

Projects into Workspace. Hit Next.

42

43

c. Make sure Select root directory is selected, then hit Browse and select the unzipped

folder that you got from buzztouch. Just select the root folder…none of the ones

beneath it, and none of the files individually.

44

d. Your project should show up in the Projects: box, and should be check marked. Hit

Finish.

e. Wait while Eclipse builds your workspace. You can see the progress in the lower right-

hand corner of Eclipse.

45

f. Once the workspace is built, your project should be loaded and ready for you to work

with. You should see a screen similar to the following. We’ll address the warnings and

stuff later…this is just about getting your project into Eclipse.

Method Two: Start A New Android Project.

This method starts an entirely new project, but uses files that you point Eclipse to. It’ll say a project

already exists in your source folder, but that’s OK, just select it, and it’ll build the project based on those

files.

1. Start Eclipse. Start Eclipse by either clicking on the icon you set up for it somewhere, or double-

clicking on the eclipse.exe file that is found In your installation path. For me, it’s at

c:\eclipse\eclipse.exe (Windows).

2. Start a new Android Project.

1. Go to File…New…Project. You might have an option for Android Project, but you might

not. So, just select Project

46

2. From the resulting dialogue box, expand Android if necessary, and select Android

Project. Hit Next.

47

3. Specify a Project Name (I use the same name as what I have in the BT control panel for

the app). Select Create Project From Existing Source and browse to your download

folder. Select the root folder from the source package you downloaded and unzipped

from BT. Hit Finish.

48

4. Wait while Eclipse builds your workspace. You can see the progress in the lower right-

hand corner of Eclipse.

49

5. Once the workspace is built, your project should be loaded and ready for you to work

with. You should see a screen similar to the following. We’ll address the warnings and

stuff later…this is just about getting your project into Eclipse.

Congratulations! Your project is now loaded into Eclipse and ready for you to work with. See…that

wasn’t so bad!

Before you can actually run your application, you’ll need to make sure it’s error free. It’s OK if there are

warnings in your application…those are just what they sound like, but you can’t have any errors. Take a

look at the Problems tab and see what’s there.

In this particular example, there are only warnings, so that’s a good thing. However…initially, when I

loaded this project, it came up with a bunch of errors. I struggled for a bit to understand why, and then

50

decided to check and make sure the correct Google API was being referenced. It was not, and when I

corrected it, all was well. So, if you see errors in you project, do the following:

1. Go to File….Properties and click on Android. For buzztouch v1.5/v2.0 apps, you need to

make sure you have selected Google APIs 2.2/8. If you have not, none of this will work.

Make sure that, and only that, API is checked, and hit Apply. Then hit OK.

Go to File…Refresh (F5) and refresh your project. Hopefully all the errors will disappear! If they don’t,

something else is wrong, and you’ll need to post a message on the forum to ask for help, or see the list

of Common Android Issues later in this book.

Now that your app is error free (remember, warnings are OK), you’re ready to compile and run it in the

simulator. You should have an Android Virtual Device set up in Eclipse per my other book. It will get

loaded automatically when you run your app.

To run your app in the virtual device, do the following:

1. Highlight your project in Package Explorer

2. Go to Run…Run As…Android Application. Or, you could hit the green circle icon you see on

the toolbar.

3. Click on the Console tab so you can monitor what’s happening. If things are going well,

you’ll see output that looks like this:

[2011-11-30 14:26:28 - buzztouch] ------------------------------

[2011-11-30 14:26:28 - buzztouch] Android Launch!

[2011-11-30 14:26:28 - buzztouch] adb is running normally.

[2011-11-30 14:26:28 - buzztouch] Performing com.thunderdroid.BT_activity_root activity

launch

[2011-11-30 14:26:29 - buzztouch] Automatic Target Mode: launching new emulator with

compatible AVD 'buzztouch_v1.5'

[2011-11-30 14:26:29 - buzztouch] Launching a new emulator with Virtual Device

'buzztouch_v1.5'

[2011-11-30 14:27:15 - buzztouch] New emulator found: emulator-5554

[2011-11-30 14:27:15 - buzztouch] Waiting for HOME ('android.process.acore') to be

launched...

4. Wait while everything loads…this often takes several minutes. Seriously…you can get a cup

of coffee, or perhaps arrange to send me a case of SoBe Fruit Punch (my favorite drink!)

while it’s loading. The AVD is super slow to load.

If everything goes well, your app will show up in your AVD, and you’ll be doing the happy dance!

51

(Yeah, I know that’s a totally lame looking app, but it was just something I threw together to

demonstrate this stuff for you. I’m working on some better stuff…I promise!)

So, now you know that your app works, and after spending countless hours making it look beautiful,

you’re ready to test it on a real device, or publish it somewhere for the general masses. Let’s take a look

at how you Export your app and create the .apk package you need in order to install it on a device.

To start, we’re only going to worry about creating the debug package, using the debug.keystore, until

we have a more complete discussion about keystores in a future chapter.

52

Here’s the process for creating a debug package:

1. Highlight your project in Package Explorer.

2. Go to File…Export, and select Export Android Application. Expand the Android section if you

don’t see that option. Hit Next.

3. Select the project to export. It should already be filled in with your project name (most likely

buzztouch). If not, browse to the folder your project is in. Note the statement on the screen that

says “The manifest ‘debuggable’ attribute is set to true.” This is what you want. Hit Next.

4. Navigate to your debug.keystore file, and enter the keystore password (‘android’ is the default).

Hit Next.

53

5. Choose Use Existing Key, and select your debug.keystore alias (default is ‘androiddebugkey’)

and password (‘android’). Hit Next.

54

6. Browse to the location you want to have your package saved to, then hit Finish.

7. Check the location to make sure the file was created! If all is good, you can now deploy this on

your test device. I’ve found that putting it on the web somewhere and having a person surf to

the package is the easiest way to install.

Creating a release package is basically the same process as a debug package. The main differences are

the keystore you use, and the fact that the debuggable attribute is set to ‘false.’ Here’s what you do:

55

1. Double-click on the AndroidManifest.xml file in your project tree. You’ll find that in Project

Explorer. Several tabs should open up, one called Application. In that tab you will find many

fields that can be changed, one of which is called Debuggable. You want to set this to false.

2. Highlight your project in Package Explorer.

3. Go to File…Export, and select Export Android Application. Expand the Android section if you

don’t see that option. Hit Next.

4. Select the project to export. It should already be filled in with your project name. If not, browse

to the folder your project is in. Hit Next.

5. Navigate to your release.keystore file, and enter the keystore password (I have no idea what it

would be for you). Hit Next.

56

6. Choose Use Existing Key, and select your release.keystore alias and password. Hit Next.

7. Browse to the location you want to have your package saved to, then hit Finish.

That’s it! Just like with the debug process, you should now have a .apk file somewhere that can be

loaded into whatever marketplace you want to distribute from.

57

Chapter 8

Adding Files to Your Project

There may come a time when you want to include files in the app itself, which means the content is

immediately available to your users (instead of downloading via the network). Such content might

include images, books (HTML, Word, Excel, PDF), audio and video. Most buzztouch projects handle this

without any problems, as you are able to specify both local and URL files. If you specify a local one,

however, it needs to be added to your project files so it can be compiled into your app. Here’s how you

do that!

1. Open your project in Eclipse, and view it in Package Explorer. That’s window you see on the left

side of the screen. This will show you the file structure for your project. Notice that this project

has the default files provided by buzztouch.

58

2. Open your buzztouch project in Windows Explorer or Mac Finder, and navigate to the BT_Docs

folder. Notice that what you see here, and what you see in Package Explorer, they match.

3. Add the files you want to be included to your BT_Docs folder in Explorer or Finder.

4. Go to File…Refresh, or press the F5 Key, and the project will begin to refresh. The following

dialogue box will pop up.

59

5. Verify that your files are now visible In the Package Explorer.

6. Do a Project…Clean and then Run…Run As…Android Application. Your files should now be part

of your app!

Overall the process is pretty simple. The key thing to always keep in mind is that new files added to your

project folder…the set of folders that you downloaded from buzztouch…must also be added to both

your Xcode and Eclipse projects. If you don’t indicate that there are new files that should be included in

the build process, then they’ll never show up in your app. Follow these steps, and you should be OK!

60

Chapter 9

All About Keystores and Signing

If you are creating an Android application, Google requires that those applications are signed with a

certificate. This signing process is significantly easier than what Apple makes iOS developers go through,

as Android developers can generate their own certificates for signing applications, using commonly

available tools like keystore, which comes with your Java JDK. Google requires that all applications be

signed, be it a development or release application. Each requires a different certificate, so let’s take a

look at each.

Signing For Development/Debug

When you installed your Android SDK, you got with it a debug.keystore that can be used to sign your

application for debug purposes. The default locations for the debug.keystore appears to be these

locations for the following platforms:

Windows: C:\Books and Settings\<USER>\.android

Mac: \Users\<USER>\android

If you don’t find anything at these locations on your computer, just do a search for ‘keystore’ and you

should find what you’re looking for.

The debug.keystore ships with the following default parameters:

 Keystore name: "debug.keystore"

 Keystore password: "android"

 Key alias: "androiddebugkey"

 Key password: "android"

 CN: "CN=Android Debug,O=Android,C=US"

This information becomes important when you go to sign your application for debug. Once you have

your application ready for testing, and you want to create a debug package, you can follow these steps:

1. Make sure that android:debuggable="true" is set in your AndroidManifest.xml file. This file is

located in the root of your project folder that you got from buzztouch.

2. Highlight your project in Package Explorer, right-click, and select Export.

3. Select Android…Export Android Application and then Next.

61

4. The Project name should already be filled in, since you are working directly from that project.

Hit Next.

5. Select Use Existing Keystore and hit Browse to navigate to your debug.keystore, and select it.

Then enter your password (android), and hit Next.

6. Select the androiddebugkey alias and use android as the password. Select Next.

7. Now you’ll want to select a destination for your .apk file. As always, make sure it’s somewhere

you remember. You can also give your package a name at this step. Notice that in this example,

the expiration date for the debug key is in 2041. So no worries!

62

8. Hit Finish, and the debug package for your application will be built! Congratulations on building

and signing your Android application! You can now distribute it in whichever way you want

(email, the web, etc), so long as it doesn’t go into a store. Debug apps are not allowed in stores

(meaning, if debuggable=”true” is set, it won’t get accepted).

Keep in mind that you don’t have to use the default debug.keystore that comes with your Android SDK.

I’m not entirely sure why you would want to create your own…perhaps you want people to specifically

know it came from you, but the option exists to create it during this same process. Just select Create

New Keystore instead of using the existing keystore, and you’ll be prompted through the process.

Signing For Release/Distribution

OK, you’ve done all your testing, everything is in order, and you’re ready to put your store in one of the

various marketplaces. Cool! The process for signing your application for release/distribution is the same

as for debug/development, but in this case you use a release.keystore instead. You can create a

release.keystore during the export process.

1. Make sure that android:debuggable="false" is set in your AndroidManifest.xml file. This file is

located in the root of your project folder that you got from buzztouch.

2. Highlight your project in Package Explorer, right-click, and select Export.

3. Select Android…Export Android Application and then Next.

4. The Project name should already be filled in, since you are working directly from that project.

Hit Next.

5. Select Create new keystore and fill in a keystore location and passwords (keep them strong!).

63

6. Provide the requested information. Use a strong password, and pick a nice validity duration (I

used 25 years). This can be the release key you use forever, and it identifies you as the signer of

the application. So, keep it legit, and keep it secure! Hit Next.

7. Now you’ll want to select a destination for your .apk file. As always, make sure it’s somewhere

you remember. You can also give your package a name at this step.

64

8. Hit Finish, and the release package for your application will be built! Congratulations on building

and signing your Android application! You are now ready to officially place it in the Marketplace!

That pretty much sums up the Android signing process! The two keystores you created, debug and

release, will be used again in a different tutorial on getting a Google Maps API key. You should make a

backup of our release key, as it identifies you as the author of your app, and should not be

compromised.

65

Chapter 10

Getting a Google Maps API Key

If you are creating an Android application that uses maps in it (which is a very cool feature to have!),

you’re going to need a Google Maps API key from, you guessed it, Google! The process can be a bit

confusing, and is booked here:

http://code.google.com/android/add-ons/google-apis/mapkey.html

Let’s take a few minutes and walk through the process step-by-step. We’ll do this on a Windows XP box,

but the steps are essentially the same on a Mac or Linux box. You’re going to do the following:

 Get the MD5 Fingerprint of your Signing Certificate

 Get the MD5 Fingerprint of your SDK Debug Certificate

 Register your fingerprints (not the ones on your hand!) with the Google Maps Service

 Add the Maps API Keys to your application

Let’s begin by making sure the appropriate keystores are in place. When you installed your Android SDK,

it automatically created a debug.keystore, which you use for, you guessed it, debug signing! The default

locations for the debug.keystore appear to be these locations for the following platforms:

Windows: C:\Books and Settings\<USER>\.android

Mac: \Users\<USER>\android

If you don’t find anything at these locations on your computer, just do a search for ‘keystore’ and you

should find what them.

The debug.keystore ships with the following default parameters:

 Keystore name: "debug.keystore"

 Keystore password: "android"

 Key alias: "androiddebugkey"

 Key password: "android"

CN: "CN=Android Debug,O=Android,C=US"

If, for some reason, you debug.keystore does not exist, or become corrupted, you can create a new one

by doing a build of your application, and it will automatically be created.

http://code.google.com/android/add-ons/google-apis/mapkey.html

66

In addition to the debug.keystore, you’ll also need a release keystore created in order to get your

Google Maps API key. There are basically two ways to create it – via the command line, and by building

your application for release, and creating the keystore at that time.

1. Command Line Method. Open a command prompt (Windows)or terminal session (Linux/Mac)

and issue the following command:

a. keytool -genkey -v -keystore you-decide.keystore -alias

alias_name -keyalg RSA -keysize 2048 -validity 10000

2. Release Build Method. With this method, you will build your app in release mode, and create

the keystore along the way.

a. Make sure that android:debuggable="false" is set in your AndroidManifest.xml file. This

file is located in the root of your project folder that you got from buzztouch.

b. Highlight your project in Package Explorer, right-click, and select Export.

c. Select Android…Export Android Application and then Next.

d. The Project name should already be filled in, since you are working directly from that

project. Hit Next.

e. Select Create new keystore and fill in a keystore location and passwords (keep them

strong!).

f. Provide the requested information. Use a strong password, and pick a nice validity

duration (I used 25 years). This can be the release key you use forever, and it identifies

you as the signer of the application. So, keep it legit, and keep it secure! Hit Next.

67

g. Now you’ll want to select a destination for your .apk file. As always, make sure it’s

somewhere you remember. You can also give your package a name at this step.

h. Hit Finish, and the release package for your application will be built! You’ll also now

have a release keystore good for 25 years, and you can use it to request your Google

Maps API key!

So, this has been a bit of a long process to get ready to request our MD5 fingerprints, but we’re ready

for that now. This is a command line procedure, and is accomplished as follows:

1. Get the MD5 Fingerprint of your Signing Certificate. From the command line or terminal

session, enter the following command.

68

a. keytool -list -alias your_release_key_alias -keystore

your_release.keystore -storepass your_password -keypass

your_password

The result of this command should look something like this:

Certificate fingerprint (MD5): 91:EF:AA:33:DD:CC:C2:1D:7F:AB:9C:49:DC:36:D9:3B

2. Get the MD5 Fingerprint of your SDK Debug Certificate. From the command line or

terminal session, enter the following command.

a. keytool -list -alias androiddebugkey -keystore

debug.keystore -storepass android -keypass android

The result of this command should look something like this:

Certificate fingerprint (MD5): G1:88:33:77:99:22:7F:A1:A1:47:87:10:90:C6:53:6C

At this point, you have all the information you need to request your Google Maps API debug and release

keys! Follow these steps, and you’ll be up and running soon!

1. Go to http://code.google.com/android/maps-api-signup.html

2. If you don't have a Google account, use the link on the page to set one up.

3. Read the Android Maps API Terms of Service carefully. If you agree to the terms, indicate so

using the checkbox on the screen.

4. Paste the MD5 certificate fingerprint of the certificate that you are registering into the

appropriate form field.

5. Click "Generate API Key"

The website will generate a code that looks something like this:

0oYoJTnGQYNBciyXYZfbutxABCBqAsEjshrbpIw

Get an API key for both your debug and release MD5 fingerprints and write them down for safe keeping.

I created a file that contains my MD5 fingerprints (along with the command I used to get them) and the

corresponding API key. That way I have all the info I need in one place.

You’re now ready for the last step, which is configuring your Android application with the correct keys.

Double check the Readme.txt file that comes with your Android project package from buzztouch, but at

the time of this writing, the location for placing your keys is in the res\values\string.xml file. If you open

it up, you’ll see the following two lines near the top:

http://code.google.com/android/maps-api-signup.html

69

<string name="googleMapsAPIKeyDebug">yourGoogleMapsKeyForDebug</string>

<string name="googleMapsAPIKeyRelease">yourGoogleMapsKeyForRelease</string>

Paste your keys in the appropriate line, and you’re good to go!

70

Chapter 11

Publishing Your App to Google Play

The moment you’ve been waiting for has finally arrived. You’ve designed your app, tested it, tweaked it,

and created the final file. There’s only one more step left – time to publish!

There are multiple ways you could distribute your Android app:

 Publish on Google Play

 Publish on Amazon Marketplace

 Email your app to people

 Post it on a website

 A jillion other methods!

This chapter will focus on publishing your app to Google Play, which is arguably the most popular way to

get your app onto the millions (literally!) of Android devices across the world.

Ready? Let’s get started!

First thing you need to do is head over to the following URL and set up your Google Play Android

Developer Account. Remember…it’ll cost you $25 to sign up (onetime fee).

https://play.google.com/apps/publish

If you already have a Google account (any of them), this will be super easy.

Once you log into your Developer Console, you’ll be presented with a screen that looks similar to this.

It’ll be different if you already have apps published.

https://play.google.com/apps/publish

71

Click the Upload Application button to start the process of submitting a new app. You’ll see this screen:

If for some reason you are not ready with your .apk file, that’s OK…just hit Close. It’ll then take you to

the next screen in the process. If you do have your .apk file ready, hit Browse, navigate to the file, and

then hit Upload. When it’s done, you’ll get directed to the same screen that you would if you had hit

Close.

72

This is the first part of a longer screen, but it’s really the meat of what you need to provide in order to

publish your app. Here’s a synopsis of what you’ll need to provide (these are required):

1. At least two (2) screenshots. They need to be in either .png or .jpg format, and should be in one

of the following dimensions:

a. 320x480,

b. 480x800

c. 480x854

d. 1280x720

e. 1280x800

2. A high resolution application icon with 512x512 dimensions

3. A title for your app (30 characters max)

4. A description in English of your app (what do you want your users to know about it?)

5. An Application Type

6. A Category

7. Copy Protection decision

a. Off (allows the app to be copied from the device)

b. On (helps prevent copying)

8. A content rating

9. Price (Free, unless you configure a Merchant Account)

10. Countries you want it available in

11. Contact information (be sure to provide at least one)

a. Website

b. Email

c. Phone

12. Acknowledgement of a couple consent items

73

Once you provide all that information, upload the .apk if you haven’t already, you then have two

choices:

1. Publish – Make it available to the world!

2. Save – Save the info until you have everything in order.

Here are some screen shots of what we were talking about in the steps on the previous page:

74

Bam! That’s it! In an amount of time that seems to range from a couple minutes to a couple hours, your

app will be live at Google Play, and available for download by literally millions of people! Here’s a screen

shot of what it might look like. Congratulations on being a published app developer!

75

Chapter 12

Common Problems and Solutions

What follows below is a random listing of some common Android-related problems you may face, and

their solutions. This list will grow as we produce more apps and run into more issues!

 Problem: AndroidManifest.xml is missing.

1. The reason for this error is currently unknown. Here are some potential solutions.

 Turn off everything and restart

 Verify your installation of Eclipse

 Verify AndroidManifest.xml actually exists in Package Explorer

 Right-click on Project, select Android Tools…Build Project Properties

 Problem: Project has no default.properties file! Edit the project properties to set one.

1. There are multiple reasons for this, but it basically refers to a problem with your

default.properties file. The easiest way to fix this is to right-click on your project in

Project Explorer, and pick Android Tools…Fix Project Properties.

 Problem: “Android requires compiler compliance level 5.0 or 6.0. Found '1.7' instead. Please use

Android Tools > Fix Project Properties.”

1. For whatever reason, your project properties are not set correctly.

 Right-click on your project and select "Properties -> Java Compiler", check

"Enable project specific settings" and select 1.5 or 1.6 from "Compiler

compliance settings" select box. Try different levels if the first one does not

work.

2. http://stackoverflow.com/questions/7637144/android-requires-compiler-compliance-

level-5-0-or-6-0-found-1-7-instead-plea

 Problem: “Installation error: INSTALL_FAILED_INSUFFICIENT_STORAGE”

1. It seems like there are a gagillion reasons for this, and no real solutions, but apparently

increasing the amount of memory available to your AVD works in many instances.

 Solution #1 : Find the .android folder on your system. That’s where your AVD

configuration files are. In my Windows system, it’s located at C:\Books and

Settings\mf\.android\avd\. Open up the <avdname>.avd file and

http://stackoverflow.com/questions/7637144/android-requires-compiler-compliance-level-5-0-or-6-0-found-1-7-instead-plea
http://stackoverflow.com/questions/7637144/android-requires-compiler-compliance-level-5-0-or-6-0-found-1-7-instead-plea

76

put this line in it : disk.dataPartition.size=2048. What this

apparently does it change the size of the partition dedicated to the AVD to 2Gb,

which appears to be more than enough for most apps. Since editing this file, I

have not received the INSTALL_FAILED_INSUFFICIENT_STORAGE message.

 Solution #2: Right click the root of your Android Project, go to "Run As" then go

to "Run Configurations..." locate the "Android Application" node in the tree at

the left, then select your project and go to the "Target" tab on the right side of

the window look down for the "Additional Emulator Command Line Options"

field (sometimes you'll need to make the window larger) and finally paste "-

partition-size 1024" there. Click Apply and then Run to use your emulator.

 Solution #3 : Go to Eclipse's Preferences, then Select “Launch” Add “-partition-

size 1024” on the “Default emulator option” field, then click “Apply” and use

your emulator as usual.

2. http://stackoverflow.com/questions/4709137/solution-android-install-failed-

insufficient-storage-error

3. http://stackoverflow.com/questions/2239330/how-to-increase-storage-for-android-

emulator-install-failed-insufficient-stora

 Problem: Your Android v1.5 or v2.0 app has a map screen in it, and the Google Map tiles are not

showing up when the screen is launched. All the pins are there, but no map tiles. Often times

this works in the emulator, but then fails to work when you publish the app. Using a

combination of experience and some info from @Fred’s blog (http://myskylla.wordpress.com/),

here are the steps to configure maps (not including driving directions) for your Android app.

1. Obtain a Google Maps API Key. You can use this book to get you through that process:

http://www.buzztouch.com/resources/Obtaining_a_Google_Maps_API_Key_v1.0.pdf

2. Copy and paste the Release and Debug API Keys into your

\res\values\strings.xml file. The lines you need are near the top of the file,

and look like the following. Once done, save and close the file.

 <string name="googleMapsAPIKeyDebug">DebugKey</string>

 <string name="googleMapsAPIKeyRelease">ReleaseKey</string>

3. In the \res\layout\ screen_map.xml file, change the line that reads

android:apiKey="@string/googleMapsAPIKeyDebug" TO

android:apiKey="@string/googleMapsAPIKeyRelease" (notice all that

has changed is the word Debug to Release)

http://stackoverflow.com/questions/4709137/solution-android-install-failed-insufficient-storage-error
http://stackoverflow.com/questions/4709137/solution-android-install-failed-insufficient-storage-error
http://stackoverflow.com/questions/2239330/how-to-increase-storage-for-android-emulator-install-failed-insufficient-stora
http://stackoverflow.com/questions/2239330/how-to-increase-storage-for-android-emulator-install-failed-insufficient-stora
http://myskylla.wordpress.com/
http://www.buzztouch.com/resources/Obtaining_a_Google_Maps_API_Key_v1.0.pdf

77

4. In your AndroidManifest.xml file, which is in the root folder of your project, uncomment

the lines near the bottom of the file that look like the following. For clarity, check the

README file that came with your project.

<!-- required libraries for maps -->

<uses-library android:name="com.google.android.maps"/>

5. Save everything, compile your app, sign it using your Release key, and publish!

78

Chapter 13

Problem Reporting and Basic Debug

We’ve all seen the post in the forum that goes something like this:

“Tried to compile my app, and it doesn’t work! Please help!”

Or maybe it goes something like this:

“Got errors when I tried to compile my app, and it won’t run on my device. What do I do?”

The people who participate in the buzztouch forum are some of the most amazing and intelligent people

I have ever been involved with, but the only way they can help you fix your problems is if you give as

much information as possible in your problems reports, and you provide as much debug help as

possible. Without some basic information in the initial post, we all have to spend time asking a set of

questions that should always be answered right from the start. I believe that the following should be

included in every problem report you put in the forums:

1. buzztouch Version : v1.4 or v1.5

2. Android, iOS or Both

3. What version of Xcode/iOS SDK?

4. What version of Eclipse/Android SDK?

5. The most complete problem description you can give. More details are better than fewer

details, and actual error messages pasted into the post are very helpful. Don’t just say it doesn’t

work or that there are errors…tell us how it’s not working, and what the actual error messages

are!

6. Screen captures so we can see what’s going on are often extremely helpful. Remember the

saying; a picture is worth a thousand words! DropBox is a great place to host images, and best of

all it’s FREE! (use this link to sign up and I’ll get an extra 250MB of space free when you do!

http://db.tt/TCxVvk8)

You will be amazed and how much help you will get from your fellow forum users if you provide this

basic information. Lots of times we can look at what you post and the answer is obvious because we’ve

run into the same issues before ourselves. But sometimes there’s literally not enough information to

even begin to debug the problem, and it’s highly unlikely that a person will visit your post again to see if

you’ve updated it with more info. Do it right the first time, and you’ll get your problem solved quicker!

Now that you know what sort of information is most helpful to people in the forum, let’s take a look at

how to set up your environment to show helpful debug info. Both Xcode and Eclipse provide some tools

http://db.tt/TCxVvk8

79

that let you know exactly what’s going on with every step of your app compiling and running. I’ll show

you how to configure some of that now.

Configuring Eclipse For Debug Information

Eclipse provides many useful options for debugging your application. Here’s what a typical screen might

look like running Eclipse 3.7.1 (Indigo) that has the Android SDK installed in it.

There’s a lot going on here, and you can add or subtract what you want by clicking on the X for a

particular pane, or by adding views and such through the tool bar. Just click around and you’ll eventually

get things configured the way you want them.

80

The area at the bottom of your screen is where you’ll find most of the debug screens that will be helpful

to you as you try and figure out what’s going on in your application. If for some reason you don’t see the

same panes that I do, you can enable them pretty easily by going to Window…Show View and selecting

the views that you wish to see. Here’s what that looks like:

I’ve highlighted two views…Console and LogCat…as being the most useful for debugging. Let’s take a

look at what each does.

The Console view pretty much gives you an indication on whether your app is being loaded into the

Android Virtual Device (AVD) you created and tied to your app. If there are problems launching the

console, installing the app, or anything related to that, those will be logged here. Here’s an example of

what you hope to see in the Console, because, in this case, it means your app loaded successfully and

you’re off and running!

81

If for some reason the AVD has a problem initializing and launching, or the app won’t install to the AVD,

you’ll get errors logged here.

The next place of interest is LogCat. This view logs pretty much every move made in your app. It reports

on the existence, or non-existence of files or other resources. It tells you which files are being loaded,

and from where. It tells you if there was an error, and what it was. If you experience a problem with

your app, this is the first place you should look for information on what went wrong. Here’s a peek at

what you can expect to find.

As I indicated, there is tons and tons of seriously useful information here, and it can all be copied and

pasted to the forum for review by others. I don’t think I would copy everything…that would be way too

much! The best approach here is to do something in the AVD that isn’t working, and copy the

information that gets logged as a result of that action. Then you can easily correlate your actions with

82

particular failures. It’s absolutely worth your time to play around with LogCat and see how amazing it

is…you’ll probably learn a lot about your app that you never knew!

The final section I want to mention is the Problems view. This view gives you an indication of any

Warnings or Problems that might prevent your app from compiling or running correctly. It looks pretty

much like this:

In this particular example, all we see here are Warnings, and not all Warnings are things you need to be

concerned about, and they generally won’t prevent your app from compiling. However, if you see some

Problems listed here, they will prevent your app from being compiled, and they need to be resolved

before you can move on. If you experience weird app behavior, it’s probably worth a few minutes to

look through this view.

That pretty much sums up the basics for Eclipse! Between those three views, you should have plenty of

great debug information to help you solve your problem, or to post to the forum so others can help.

83

Chapter 14

Final Thoughts

With your discovery of buzztouch.com, and your dedication to making it through this way too long book,

you have started on a journey you probably never imagined, and one you’ll probably never stop being

on. There’s nothing quite like spending hours and hours in front of your computer, piecing together the

parts of what you know is going to be an amazing app, then publishing it and watching the download

count increase! It’s an accomplishment you should be very, very proud of.

Good luck with your app making. If you have some time, consider dropping a line to David, Parker and

Stephen at buzztouch (info@buzztouch.com) letting them know what an awesome product they have.

I’m sure they’d appreciate it.

Comments? Post them in the forum or email me at MrkFleming@gmail.com.

A list of current book versions can be found here:

https://dl.dropbox.com/u/4993711/CurrentBTDocVersions.txt

Revision Log

v1.0 06/16/12 Initial release of book. GoNorthWest

mailto:info@buzztouch.com
mailto:MrkFleming@gmail.com
https://dl.dropbox.com/u/4993711/CurrentBTDocVersions.txt

